Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
5th Edition
ISBN: 9780980232776
Author: Gilbert Strang
Publisher: Wellesley-Cambridge Press
bartleby

Videos

Question
Book Icon
Chapter 3.4, Problem 29PS
To determine

(a)

The subspace of 3 by 3 matrices spanned by invertible matrices.

The invertible matrices span the space of all 3 by 3 matrices.

Given:

3 by 3 matrices.

Calculation:

It is noted that a set of vectors spans a whole space if their linear combinations fill the space.

Therefore, the invertible matrices span the space of all 3 by 3 matrices.

(b)

The subspace of 3 by 3 matrices spanned by rank one matrix.

The rank one matrix span the space of all 3 by 3 matrices.

Given:

3 by 3 matrices.

Calculation:

It is noted that rank of a matrix is its number of pivots. If the rank one matrix has only one pivot, it means that its (n1)columns are linearly dependent

Therefore, the rank one matrix spans the space of all 3 by 3 matrices.

(c)

The subspace of 3 by 3 matrices spanned by the identity matrix.

I itself spans the space of all multiples cI.

Given:

3 by 3 matrices.

Calculation:

It is noted that the identity matrix itself spans the space of all matrices.

Therefore, I by itself spans the space of all multiples cI.

To determine

(b)

The subspace of 3 by 3 matrices spanned by rank one matrix.

The rank one matrix span the space of all 3 by 3 matrices.

Given:

3 by 3 matrices.

Calculation:

It is noted that rank of a matrix is its number of pivots. If the rank one matrix has only one pivot, it means that its (n1)columns are linearly dependent

Therefore, the rank one matrix spans the space of all 3 by 3 matrices.

(c)

The subspace of 3 by 3 matrices spanned by the identity matrix.

I itself spans the space of all multiples cI.

Given:

3 by 3 matrices.

Calculation:

It is noted that the identity matrix itself spans the space of all matrices.

Therefore, I by itself spans the space of all multiples cI.

To determine

(c)

The subspace of 3 by 3 matrices spanned by the identity matrix.

I itself spans the space of all multiples cI.

Given:

3 by 3 matrices.

Calculation:

It is noted that the identity matrix itself spans the space of all matrices.

Therefore, I by itself spans the space of all multiples cI.

Blurred answer
Students have asked these similar questions
I want a mathematical relationship with all the details, not explanations and definitions
4 sinx cos2x+4 cos x sin2x-1=0
For the matrix A, find (if possible) a nonsingular matrix P such that P-1AP is diagonal. (If not possible, enter IMPOSSIBLE.) 6 -2 -[47] A = -3 1 P = Verify that P-1AP is a diagonal matrix with the eigenvalues on the main diagonal. P-1AP =

Chapter 3 Solutions

Introduction to Linear Algebra, Fifth Edition

Ch. 3.1 - Prob. 11PSCh. 3.1 - Prob. 12PSCh. 3.1 - Prob. 13PSCh. 3.1 - Prob. 14PSCh. 3.1 - Prob. 15PSCh. 3.1 - Prob. 16PSCh. 3.1 - Prob. 17PSCh. 3.1 - Prob. 18PSCh. 3.1 - Prob. 19PSCh. 3.1 - Prob. 20PSCh. 3.1 - Prob. 21PSCh. 3.1 - Prob. 22PSCh. 3.1 - Prob. 23PSCh. 3.1 - Prob. 24PSCh. 3.1 - Prob. 25PSCh. 3.1 - Prob. 26PSCh. 3.1 - Prob. 27PSCh. 3.1 - Prob. 28PSCh. 3.1 - Prob. 29PSCh. 3.1 - Prob. 30PSCh. 3.1 - Prob. 31PSCh. 3.1 - Prob. 32PSCh. 3.2 - Prob. 1PSCh. 3.2 - Prob. 2PSCh. 3.2 - Prob. 3PSCh. 3.2 - Prob. 4PSCh. 3.2 - Prob. 5PSCh. 3.2 - Prob. 6PSCh. 3.2 - Prob. 7PSCh. 3.2 - Prob. 8PSCh. 3.2 - Prob. 9PSCh. 3.2 - Prob. 10PSCh. 3.2 - Prob. 11PSCh. 3.2 - Prob. 12PSCh. 3.2 - Prob. 13PSCh. 3.2 - Prob. 14PSCh. 3.2 - Prob. 15PSCh. 3.2 - Prob. 16PSCh. 3.2 - Prob. 17PSCh. 3.2 - Prob. 18PSCh. 3.2 - Prob. 19PSCh. 3.2 - Prob. 20PSCh. 3.2 - Prob. 21PSCh. 3.2 - Prob. 22PSCh. 3.2 - Prob. 23PSCh. 3.2 - Prob. 24PSCh. 3.2 - Prob. 25PSCh. 3.2 - Prob. 26PSCh. 3.2 - Prob. 27PSCh. 3.2 - Prob. 28PSCh. 3.2 - Prob. 29PSCh. 3.2 - Prob. 30PSCh. 3.2 - Prob. 31PSCh. 3.2 - Prob. 32PSCh. 3.2 - Prob. 33PSCh. 3.2 - Prob. 34PSCh. 3.2 - Prob. 35PSCh. 3.2 - Prob. 36PSCh. 3.2 - Prob. 37PSCh. 3.2 - Prob. 38PSCh. 3.2 - Prob. 39PSCh. 3.2 - Prob. 40PSCh. 3.2 - Prob. 41PSCh. 3.2 - Prob. 42PSCh. 3.2 - Prob. 43PSCh. 3.2 - Prob. 44PSCh. 3.2 - Prob. 45PSCh. 3.2 - Prob. 46PSCh. 3.2 - Prob. 47PSCh. 3.2 - Prob. 48PSCh. 3.2 - Prob. 49PSCh. 3.2 - Prob. 50PSCh. 3.2 - Prob. 51PSCh. 3.2 - Prob. 52PSCh. 3.2 - Prob. 53PSCh. 3.2 - Prob. 54PSCh. 3.2 - Prob. 55PSCh. 3.2 - Prob. 56PSCh. 3.2 - Prob. 57PSCh. 3.2 - Prob. 58PSCh. 3.2 - Prob. 59PSCh. 3.2 - Prob. 60PSCh. 3.3 - Prob. 1PSCh. 3.3 - Prob. 2PSCh. 3.3 - Prob. 3PSCh. 3.3 - Prob. 4PSCh. 3.3 - Prob. 5PSCh. 3.3 - Prob. 6PSCh. 3.3 - Prob. 7PSCh. 3.3 - Prob. 8PSCh. 3.3 - Prob. 9PSCh. 3.3 - Prob. 10PSCh. 3.3 - Prob. 11PSCh. 3.3 - Prob. 12PSCh. 3.3 - Prob. 13PSCh. 3.3 - Prob. 14PSCh. 3.3 - Prob. 15PSCh. 3.3 - Prob. 16PSCh. 3.3 - Prob. 17PSCh. 3.3 - Prob. 18PSCh. 3.3 - Prob. 19PSCh. 3.3 - Prob. 20PSCh. 3.3 - Prob. 21PSCh. 3.3 - Prob. 22PSCh. 3.3 - Prob. 23PSCh. 3.3 - Prob. 24PSCh. 3.3 - Prob. 25PSCh. 3.3 - Prob. 26PSCh. 3.3 - Prob. 27PSCh. 3.3 - Prob. 28PSCh. 3.3 - Prob. 29PSCh. 3.3 - Prob. 30PSCh. 3.3 - Prob. 31PSCh. 3.3 - Prob. 32PSCh. 3.3 - Prob. 33PSCh. 3.3 - Prob. 34PSCh. 3.3 - Prob. 35PSCh. 3.3 - Prob. 36PSCh. 3.3 - Prob. 37PSCh. 3.4 - Prob. 1PSCh. 3.4 - Prob. 2PSCh. 3.4 - Prob. 3PSCh. 3.4 - Prob. 4PSCh. 3.4 - Prob. 5PSCh. 3.4 - Prob. 6PSCh. 3.4 - Prob. 7PSCh. 3.4 - Prob. 8PSCh. 3.4 - Prob. 9PSCh. 3.4 - Prob. 10PSCh. 3.4 - Prob. 11PSCh. 3.4 - Prob. 12PSCh. 3.4 - Prob. 13PSCh. 3.4 - Prob. 14PSCh. 3.4 - Prob. 15PSCh. 3.4 - Prob. 16PSCh. 3.4 - Prob. 17PSCh. 3.4 - Prob. 18PSCh. 3.4 - Prob. 19PSCh. 3.4 - Prob. 20PSCh. 3.4 - Prob. 21PSCh. 3.4 - Prob. 22PSCh. 3.4 - Prob. 23PSCh. 3.4 - Prob. 24PSCh. 3.4 - Prob. 25PSCh. 3.4 - Prob. 26PSCh. 3.4 - Prob. 27PSCh. 3.4 - Prob. 28PSCh. 3.4 - Prob. 29PSCh. 3.4 - Prob. 30PSCh. 3.4 - Prob. 31PSCh. 3.4 - Prob. 32PSCh. 3.4 - Prob. 33PSCh. 3.4 - Prob. 34PSCh. 3.4 - Prob. 35PSCh. 3.4 - Prob. 36PSCh. 3.4 - Prob. 37PSCh. 3.4 - Prob. 38PSCh. 3.4 - Prob. 39PSCh. 3.4 - Prob. 40PSCh. 3.4 - Prob. 41PSCh. 3.4 - Prob. 42PSCh. 3.4 - Prob. 43PSCh. 3.4 - Prob. 44PSCh. 3.4 - Prob. 45PSCh. 3.4 - Prob. 46PSCh. 3.5 - Prob. 1PSCh. 3.5 - Prob. 2PSCh. 3.5 - Prob. 3PSCh. 3.5 - Prob. 4PSCh. 3.5 - Prob. 5PSCh. 3.5 - Prob. 6PSCh. 3.5 - Prob. 7PSCh. 3.5 - Prob. 8PSCh. 3.5 - Prob. 9PSCh. 3.5 - Prob. 10PSCh. 3.5 - Prob. 11PSCh. 3.5 - Prob. 12PSCh. 3.5 - Prob. 13PSCh. 3.5 - Prob. 14PSCh. 3.5 - Prob. 15PSCh. 3.5 - Prob. 16PSCh. 3.5 - Prob. 17PSCh. 3.5 - Prob. 18PSCh. 3.5 - Prob. 19PSCh. 3.5 - Prob. 20PSCh. 3.5 - Prob. 21PSCh. 3.5 - Prob. 22PSCh. 3.5 - Prob. 23PSCh. 3.5 - Prob. 24PSCh. 3.5 - Prob. 25PSCh. 3.5 - Prob. 26PSCh. 3.5 - Prob. 27PSCh. 3.5 - Prob. 28PSCh. 3.5 - Prob. 29PSCh. 3.5 - Prob. 30PSCh. 3.5 - Prob. 31PS
Knowledge Booster
Background pattern image
Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:PEARSON
Text book image
Contemporary Abstract Algebra
Algebra
ISBN:9781305657960
Author:Joseph Gallian
Publisher:Cengage Learning
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:9780135163078
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:9780980232776
Author:Gilbert Strang
Publisher:Wellesley-Cambridge Press
Text book image
College Algebra (Collegiate Math)
Algebra
ISBN:9780077836344
Author:Julie Miller, Donna Gerken
Publisher:McGraw-Hill Education
Inner Product Spaces; Author: Jeff Suzuki: The Random Professor;https://www.youtube.com/watch?v=JzCZUx9ZTe8;License: Standard YouTube License, CC-BY