College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Electrical oscillations are initiated in a series circuit containing a capacitance C, inductance L, and resistance R. (a) If R << sqrt4L/C (weak damping), what time interval elapses before the amplitude of the current oscillation falls to 50.0% of its initial value? (b) Over what time interval does the energy decrease to 50.0% of its initial value?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The current in an Series RL circuit is described by the following differential equation:R i(t) + L di(t)/(dt) = V0where R is the resistance, L is the inductance, and V0 is the voltage of the source. a) Show that this is a separable differential equation, and then solve it. (Find i(t) in terms of R, L, V0). b) For a Series RL circuit with R = 50 (Ohm) and L = 10 (Henry) and the constant voltage V0 = 100 (Volt) applied at t = 0 by closing of a switch, find the current at t = 0.5 second.arrow_forward(a) If an inductor carrying a 1.95 A current stores an energy of 0.250 mJ, what is its inductance? Answer in mH (b) How much energy does the same inductor store if it carries a 3.1 A current? Answer in mJarrow_forwardA circuit consists of a 20 nF capacitor in series with a 20 µH inductor. If a charge of 30 nC is put on the capacitor, there is an oscillation. (a) What is the maximum current that moves through the circuit? (b) Find the maximum energy in the inductor and the in the capacitor? (c) What is the angular frequency of oscillation? What is the period? (d) Assume the trace resistance in the circuit is 0.102. Describe quantitatively and qualitatively the oscillation in the circuit.arrow_forward
- A constant voltage of 11.00 V has been observed over a certain time interval across a 2.30 H inductor. The current through the inductor, measured as 1.00 A at the beginning of the time interval, was observed to increase at a constant rate to a value of 8.00 A at the end of the time interval. How long was this time interval?arrow_forwardElectrosurgical units (ESUS) supply high-frequency electricity from resonant RLC circuits to cut, coagulate, or otherwise modify biological tissue. HINT (a) Find the resonance frequency (in Hz) of an ESU with an inductance of L = 1.75 µH and a capacitance of 44.0 nF. Hz (b) Calculate the capacitance required (in F) for a resonance frequency of 2.23 MHz.arrow_forwardYou are given an LC oscillator, with an L = 3.3 mH and a C = 0.09 mF. Initially, the inductor has a current flowing through it of 24 mA and the charge on the capacitor is zero at this same time. Find the maximum charge that we can expect on the capacitor at some later time. Assume that there are no internal resistance losses for these oscillations.arrow_forward
- The charge on the capacitor of an LC circuit with capacitance C and inductance L obeys the following equation. Find the maximum current in the circuit. q= Q cos [t/(LC)0.5] Q Q/(LC) 0.5 zero QQ²/(LC) 0.5 imax 1/(LC) 0.5arrow_forwardAn inductor and a resistor are connected in series. When connected to a 60-Hz, 90-V (rms) source, the voltage drop across the resistor is found to be 55 V (rms) and the power delivered to the circuit is 18 W. (a) Find the value of the resistance. 22 (b) Find the value of the inductance. Harrow_forwardA 2.8 kg body oscillates in SHM on a spring that, when extended 5.4 mm from its equilibrium position, has an 8.2 N restoring force. What are (a) the angular frequency of oscillation, (b) the period of oscillation, and (c) the capacitance of an LC circuit with the same period if L is 5.8 H?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON