An aluminum ring of radius r = 5.00 cm and a resistance of 4.15 x 104 N is placed around one end of a long air-core solenoid with 1 040 turns per meter and radius r2 = 3.00 cm as shown in the figure below. Assume the axial component of the field produced by the solenoid is one-half as strong over the area of the end of the solenoid as at the center of the solenoid. Also assume the solenoid produces negligible field outside its cross-sectional area. The current in the solenoid is increasing at a rate of 270 A/s. (a) What is the induced current in the ring? (b) At the center of the ring, what is the magnitude of the magnetic field produced by the induced current in the ring? (c) At the center of the ring, what is the direction of the magnetic field produced by the induced current in the ring? to the left to the right upward downward

Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter30: Faraday's Law
Section: Chapter Questions
Problem 5P: An aluminum ring of radius r1 = 5.00 cm and resistance 3.00 104 is placed around one end of a long...
icon
Related questions
Question
An aluminum ring of radius rị = 5.00 cm and a resistance of 4.15 × 104 N is placed around one end of a long air-core solenoid with 1 040 turns per meter and radius r2 = 3.00 cm as shown in the
figure below. Assume the axial component of the field produced by the solenoid is one-half as strong over the area of the end of the solenoid as at the center of the solenoid. Also assume the solenoid
produces negligible field outside its cross-sectional area. The current in the solenoid is increasing at a rate of 270 A/s.
(a) What is the induced current in the ring?
A
(b) At the center of the ring, what is the magnitude of the magnetic field produced by the induced current in the ring?
µT
(c) At the center of the ring, what is the direction of the magnetic field produced by the induced current in the ring?
to the left
to the right|
upward
downward
O O
Transcribed Image Text:An aluminum ring of radius rị = 5.00 cm and a resistance of 4.15 × 104 N is placed around one end of a long air-core solenoid with 1 040 turns per meter and radius r2 = 3.00 cm as shown in the figure below. Assume the axial component of the field produced by the solenoid is one-half as strong over the area of the end of the solenoid as at the center of the solenoid. Also assume the solenoid produces negligible field outside its cross-sectional area. The current in the solenoid is increasing at a rate of 270 A/s. (a) What is the induced current in the ring? A (b) At the center of the ring, what is the magnitude of the magnetic field produced by the induced current in the ring? µT (c) At the center of the ring, what is the direction of the magnetic field produced by the induced current in the ring? to the left to the right| upward downward O O
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Knowledge Booster
Electromagnets
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College