Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27, Problem 15P
(I) Alpha particles of charge q = +2e and mass m = 6.6 × 10–27 kg are emitted from a radioactive source at a speed of 1.6 × 107 m/s. What magnetic field strength would be required to bend them into a circular path of radius r = 0.18 m?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Alpha particles of charge q = 2e and mass m = 6.6 x 10-27 kg are emitted from a radioactive source at a speed of 1.6 x 107 m/s. What magnetic field would be required to bend them into a circular path of 0.25 m radius?
What is the force acting on a 1.6(10)–19 C charge when it is moving at 3(10)7m/s perpendicular to a magnetic field whose strength is 0.02 T?
What is the radius of the particle’s trajectory if the mass of the particle is 3.3(10)-27 kg?
Alpha particles of charge q = +-2e and mass m = 6.6 x 10-27kg are emitted from a radioactive souce at a speed of 1.8 x 106m/s. What magnetic field strength would be required to bend them in a circular path of radius r - 0.15m? (Hint, recall that the magnetic force gives rise to centripetal force magnitude mv2/r.)
Chapter 27 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 27.1 - Prob. 1AECh. 27.2 - Prob. 1BECh. 27.3 - A wire carrying current I is perpendicular to a...Ch. 27.3 - A straight power line carries 30A and is...Ch. 27.4 - Prob. 1EECh. 27.4 - What is the sign of the charge in Fig. 2719? How...Ch. 27.4 - A particle in a velocity selector as diagrammed in...Ch. 27 - A compass needle is not always balanced parallel...Ch. 27 - Prob. 2QCh. 27 - A horseshoe magnet is held vertically with the...
Ch. 27 - In the relation F=IlB, which pairs of the vectors...Ch. 27 - The magnetic field due to current in wires in your...Ch. 27 - If a negatively charged particle enters a region...Ch. 27 - In Fig. 2734, charged particles move in the...Ch. 27 - A positively charged particle in a nonuniform...Ch. 27 - Note that the pattern of magnetic field lines...Ch. 27 - Explain why a strong magnet held near a CRT...Ch. 27 - Describe the trajectory of a negatively charged...Ch. 27 - Can you set a resting electron into motion with a...Ch. 27 - A charged particle is moving in a circle under the...Ch. 27 - The force on a particle in a magnetic field is the...Ch. 27 - A beam of electrons is directed toward a...Ch. 27 - A charged particle moves in a straight line...Ch. 27 - If a moving charged particle is deflected sideways...Ch. 27 - How could you tell whether moving electrons in a...Ch. 27 - How can you make a compass without using iron or...Ch. 27 - Prob. 20QCh. 27 - In what positions (if any) will a current loop...Ch. 27 - A rectangular piece of semiconductor is inserted...Ch. 27 - Two ions have the same mass, but one is singly...Ch. 27 - (I) (a) What is the force per meter of length on a...Ch. 27 - (I) Calculate the magnitude of the magnetic force...Ch. 27 - (I) A 1.6-m length of wire carrying 4.5 A of...Ch. 27 - (II) The magnetic force per meter on a wire is...Ch. 27 - (II) The force on a wire is a maximum of 7.50 102...Ch. 27 - (II) Suppose a straight 1.00-mm-diameter copper...Ch. 27 - Prob. 7PCh. 27 - (II) A long wire stretches along the x axis and...Ch. 27 - (II) A current-carrying circular loop of wire...Ch. 27 - (II) A 2.0-m-long wire carries a current of 8.2 A...Ch. 27 - Prob. 11PCh. 27 - (III) A circular loop of wire, of radius r,...Ch. 27 - (I) Determine the magnitude and direction of the...Ch. 27 - (I) An electron is projected vertically upward...Ch. 27 - (I) Alpha particles of charge q = +2e and mass m =...Ch. 27 - (I) Kind the direction of the force on a negative...Ch. 27 - (I) Determine the direction of B for each ease in...Ch. 27 - Prob. 18PCh. 27 - (II) A doubly charged helium atom whose mass is...Ch. 27 - (II) A proton (mass mp), a deuteron (m = 2mp, Q =...Ch. 27 - (II) For a particle of mass m and charge q moving...Ch. 27 - (II) An electron moves with velocity...Ch. 27 - (II) A 6.0-MeV (kinetic energy) proton enters a...Ch. 27 - (II) An electron experiences the greatest force as...Ch. 27 - (II) A proton moves through a region of space...Ch. 27 - (II) An electron experiences a force...Ch. 27 - (II) A particle of charge q moves in a circular...Ch. 27 - (II) An electron enters a uniform magnetic field B...Ch. 27 - Prob. 29PCh. 27 - (II) The path of protons emerging from an...Ch. 27 - (III) Suppose the Earths magnetic field at the...Ch. 27 - Prob. 32PCh. 27 - (III) A proton moving with speed = 1.3 105 m/s...Ch. 27 - (III) A particle with charge +q and mass m travels...Ch. 27 - (I) How much work is required to rotate the...Ch. 27 - (I) A 13.0-cm-diameter circular loop of wire is...Ch. 27 - (II) A circular coil 18.0 cm in diameter and...Ch. 27 - (II) Show that the magnetic dipole moment of an...Ch. 27 - (II) A 15-loop circular coil 22 cm in diameter...Ch. 27 - (III) Suppose a nonconducting rod of length d...Ch. 27 - (I) If the current to a motor drops by 12%, by...Ch. 27 - (I) A galvanometer needle deflects full scale for...Ch. 27 - (I) If the restoring spring of a galvanometer...Ch. 27 - Prob. 44PCh. 27 - (II) An oil drop whose mass is determined to be...Ch. 27 - (II) A Hall probe, consisting of a rectangular...Ch. 27 - (II) A Hall probe used to measure magnetic field...Ch. 27 - (II) A rectangular sample of a metal is 3.0 cm...Ch. 27 - (II) In a probe that uses the Hall effect to...Ch. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - (II) One form of mass spectrometer accelerates...Ch. 27 - (II) Suppose the electric field between the...Ch. 27 - (II) A mass spectrometer is being used to monitor...Ch. 27 - (II) An unknown particle moves in a straight line...Ch. 27 - Protons move in a circle of radius 5.10 cm in a...Ch. 27 - Protons with momentum 3.8 1016 kg m/s are...Ch. 27 - A proton and an electron have the same kinetic...Ch. 27 - Prob. 59GPCh. 27 - Prob. 60GPCh. 27 - Near the equator, the Earths magnetic field points...Ch. 27 - Calculate the magnetic force on an airplane which...Ch. 27 - A motor run by a 9.0-V battery has a 20 turn...Ch. 27 - Estimate the approximate maximum deflection of the...Ch. 27 - Prob. 65GPCh. 27 - The cyclotron (Fig. 2750) is a device used to...Ch. 27 - Magnetic fields are very useful in particle...Ch. 27 - A square loop of aluminum wire is 20.0 cm on a...Ch. 27 - A sort of projectile launcher is shown in Fig....Ch. 27 - Prob. 70GPCh. 27 - In a certain cathode ray tube, electrons are...Ch. 27 - Prob. 72GPCh. 27 - A proton follows a spiral path through a gas in a...Ch. 27 - Prob. 74GPCh. 27 - The power cable for an electric trolley (Fig....Ch. 27 - A uniform conducting rod of length d and mass m...Ch. 27 - In a simple device for measuring the magnitude B...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The setup depicted in Figure 4.6 is used in a diffraction experiment using X-rays of 0.26 nm wavelength. Constr...
Modern Physics
On May 26, 1934, a streamlined, stainless steel diesel train called the Zephyr set the world's nonstop long-dis...
College Physics
5. For most automobiles, the number of miles per gallon decreases as highway speed increases. Fuel economy drop...
College Physics: A Strategic Approach (4th Edition)
12. A 5.0 g coin is placed 15 cm from the center of a turntable. The coin has static and kinetic coefficients o...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
The magnitude and direction of the electric field at point A.
Physics (5th Edition)
How does the total amount of energy coming from the Sun compare to the total amount of energy leaving Earth to ...
Lecture- Tutorials for Introductory Astronomy
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A proton precesses with a frequency p in the presence of a magnetic field. If the intensity of the magnetic field is doubled, what happens to the precessional frequency?arrow_forwardAn electron of kinetic energy 2000 eV passes between parallel plates that are 1.0 an apart and kept at a potential difference of 300 V. What is the strength of the uniform magnetic field B that will allow the electron to travel undeflected through the plates? Assume E and B are perpendicular.arrow_forwardThe force on a magnetic moment z in a nonuniform magnetic field Bz is given by Fz=zdBzdz If a beam of silver atoms travels a horizontal distance of 1 m through such a field and each atom has a speed of 100 m/s, how strong must the field gradient dBz/dz be in order to deflect the beam 1 mm?arrow_forward
- A mass spectrometer (Fig. 30.40, page 956) operates with a uniform magnetic field of 20.0 mT and an electric field of 4.00 103 V/m in the velocity selector. What is the radius of the semicircular path of a doubly ionized alpha particle (ma = 6.64 1027 kg)?arrow_forwardAn electron is accelerated through 2.40 103 V from rest and then enters a uniform 1.70-T magnetic field. What are (a) the maximum and (b) the minimum values of the magnetic force this particle experiences?arrow_forwardA spacecraft is in 4 circular orbit of radius equal to 3.0 104 km around a 2.0 1030 kg pulsar. The magnetic field of the pulsar at that radial distance is 1.0 102 T directed perpendicular to the velocity of the spacecraft. The spacecraft is 0.20 km long with a radius of 0.040 km and moves counter-clockwise in the xy-plane around the pulsar. (a) What is the speed of the spacecraft? (b) If the magnetic field points in the positive z-direction, is the emf induced from the back to the front of the spacecraft or from side to side? (c) Compute the induced emf. (d) Describe the hazards for astronauts inside any spacecraft moving in the vicinity of a pulsar.arrow_forward
- A long, straight, horizontal wire carries a left-to-right current of 20 A. If the wire is placed in a uniform magnetic field of magnitude 4.0105 T that is directed vertically downward, what is tire resultant magnitude of the magnetic field 20 cm above the wire? 20 cm below the wire?arrow_forwardCheck Your Understanding A cyclotron is to be designed to accelerate protons to kinetic energies of 20 Mev using a magnetic field of 2.0 T. What is the required radius of the cyclotron?arrow_forwardThe magnetic field in a cyclotron is 1.25 T, and the maximum orbital radius of the circulating protons is 0.40 m. (a) What is the kinetic energy of the protons when they are ejected from the cyclotron? (b) What Is this energy in MeV? (c) Through what potential difference would a proton have to be accelerated to acquire this kinetic energy? (d) What is the period of tire voltage source used to accelerate the piotons? (e) Repeat tire calculations for alpha-particles.arrow_forward
- A mystery particle enters the region between the plates of a Thomson apparatus as shown in Figure 4.6. The deflection angle θ is measured to be 0.20 radians (downwards) for this particle when V = 2000 V, ℓ = 10.0 cm, and d = 2.00 cm. If a perpendicular magnetic field of magnitude 4.57 × 10−2 T is applied simultaneously with the electric field, the particle passes through the plates without deflection. (a) Find q/m for this particle. (b) Identify the particle. (c) Find the horizontal speed with which the particle entered the plates. (d) Must we use relativistic mechanics for this particle?arrow_forward6) An alpha particle is moving at a speed of 5.0 x 105 m/s in a direction perpendicular to a uniform magnetic field of strength 0.040 T. The charge on an alpha particle is 3.2 × 10- 19 C and its mass is 6.6 × 10-27 kg. (a) What is the radius of the path of the alpha particle? (b) How long does it take the alpha particle to make one complete revolution around its path?arrow_forwardIn the Bohr model of the hydrogenatom, the electron moves in a circular orbit of radius 5.3 * 10^-11 m with aspeed of 2.2 * 10^6 m/s. If we are viewing the atom in such a way that theelectron’s orbit is in the plane of the paper with the electron moving clockwise,find the magnitude and direction of the electric and magnetic fieldsthat the electron produces at the location of the nucleus (treated as a point).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY