Concept explainers
Figure 25-18 shows plots of charge versus potential difference for three parallel-plate capacitors that have the plate areas and separations given in the table. Which plot goes with which capacitor?
Figure 25-18 Question 1.
Capacitor | Area | Separation |
1 | A | d |
2 | 2A | d |
3 | A | 2d |
To find:
Which plot goes with which capacitor.
Answer to Problem 1Q
Solution:
Plot a goes with the capacitor 2. The plot b goes with capacitor 1 and plot c goes with capacitor 3.
Explanation of Solution
1) Concept:
Using Eq.25-9, we can find capacitance of each capacitor from the given values of area and plate separation. Then using Eq.25-1, we can compare the capacitance from the slopes of the plots. Then, comparing the predictions about the capacitance yielded from both the equations, we can find out which plot goes with which capacitor.
2) Formulae:
i) From Eq.25-1, the charge
ii) From Eq.25-9, the capacitance is
3) Given:
i) For capacitor 1, area is
ii) For capacitor 2, area is
iii) For capacitor 3, area is
iv) For capacitor 1, separation is
v) For capacitor 2, separation is
vi) For capacitor 3, separation is
4) Calculations:
From Eq.25-1, the charge
where
Therefore, the capacitance is given by
From Eq.25-9, the capacitance is
where
Let,
Capacitor 1 has capacitance,
Similarly, Capacitor 2 has capacitance,
And Capacitor 3 has capacitance,
From this, we can interpret that capacitance of capacitor 2 has the greatest value and capacitor 1 has the greater capacitance than that of capacitor 3.
From the graph, we can infer that the plot a has the greatest slope. Hence, the capacitance and the slope of plot b is greater than that of plot c. Hence, corresponding capacitance.
Therefore, we can conclude that, Plot a goes with capacitor 2, plot b goes with capacitor 1 and plot c goes with capacitor 3.
Conclusion:
We can predict about the plots between the charge and the voltage corresponding to capacitors having some area and separation between the plates of capacitor from the slope of the graph and the formula for capacitance.
Want to see more full solutions like this?
Chapter 25 Solutions
Fundamentals Of Physics - Volume 1 Only
Additional Science Textbook Solutions
Chemistry
Human Anatomy & Physiology (2nd Edition)
Introductory Chemistry (6th Edition)
Chemistry: Structure and Properties (2nd Edition)
Microbiology: Principles and Explorations
The Cosmic Perspective (8th Edition)
- 2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forwardFrom number 2 and 3 I just want to show all problems step by step please do not short cut look for formulaarrow_forward
- Look at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning