Concept explainers
Assuming the particle in Figure P24.59 is positively charged, what are the directions of the forces due to the electric field and to the magnetic field?
A. The force due to the electric field is directed up (toward tho lop of the page); the force due to the magnetic field is directed down (toward the bottom of the page).
B. The force due to the electric Held is directed down (toward the bottom of the page); the force due to the magnetic field is directed tip (toward the top of the page).
C. The force due to the electric field is directed out of the plane of the paper; the force due to the magnetic field is directed into the plane of the paper.
D. The force due to the electric field is directed into the plane of the paper; the force due to the magnetic field is directed out of the plane of the paper.
Want to see the full answer?
Check out a sample textbook solutionChapter 24 Solutions
College Physics: A Strategic Approach (3rd Edition)
Additional Science Textbook Solutions
Sears And Zemansky's University Physics With Modern Physics
Essential University Physics: Volume 2 (3rd Edition)
Cosmic Perspective Fundamentals
Conceptual Physical Science (6th Edition)
The Cosmic Perspective
Essential University Physics: Volume 1 (3rd Edition)
- An electron in a TV CRT moves with a speed of 6.0107 m/s, in a direction perpendicular to Earth's field, which has a strength of 5.0105 T. (a) What strength electric field must be applied perpendicular to the Earth’s field to make the election moves in a straight line? (b) If this is done between plates separated by 1.00 cm, what is the voltage applied? (Note that TVs are usually surrounded by a ferromagnetic material to shield against external magnetic fields and avoid the need for such a collection,)arrow_forward(a) A cosmic ray proton moving toward the Earth at 5.00107m/s experiences a magnetic force of 1.701016N. What is the strength of the magnetic field it there is a 45° angle between it and the proton’s velocity? (b) Is the value obtained in part (a) consistent with the known strength of the Earth’s magnetic field on its surface? Discuss.arrow_forward(a) An oxygen16 ion with a mass at 2.661026kg travels at 5.00106m/s perpendicular to a 1.20T magnetic field, which makes it move in a circular arc with a 0.231-m radius. What positive charge is on the ion? (b) What is the radio of this charge to the charge of an electron? (c) Discuss why the radio found in (b) should be an integer.arrow_forward
- One long wire carries current 30.0 A to the left along the x axis. A second long wire carries current 50.0 A to the right along the line (y = 0.280 m, z = 0). (a) Where in the plane of the two wires is the total magnetic field equal to zero? (b) A particle with a charge of 2.00 C is moving with a velocity of 150iMm/s along the line (y = 0.100 m, z = 0). Calculate the vector magnetic force acting on the particle. (c) What If? A uniform electric field is applied to allow this particle to pass through this region undetected. Calculate the required vector electric field.arrow_forward(a)What is the angle between a wire carrying an 8.00-A current and the 1.20-T field It Is in if 50.0 cm of the wire experiences a magnetic force of 2.40 N? (b) What is the force on the wire If It Is rotated to make an angle of 90° with the field?arrow_forwardA proton enters a region with a uniform electric field E=5.0kV/m and a uniform magnetic field B=5.0104kT. The proton has initial velocity v0=2.5105m/s. How far along the z axis does the proton travel after it undergoes three complete revolutions?arrow_forward
- At a particular instant an electron is traveling west to east with a kinetic energy of 10 keV. Earth's magnetic field has a horizontal component of 1.8105 T north and a vertical component of 5.0105 T down. (a) What is the path of the election? (b) What is the radius of curvature of the path?arrow_forward(a) A proton moving with velocity v=ii experiences a magnetic force F=Fij. Explain what you can and cannot infer about B from this information. (b) What If? In terms of Fi, what would be the force on a proton in the same field moving with velocity v=ii? (c) What would be the force on an electron in the same field moving with velocity v=ii?arrow_forwardA proton travels with a speed of 3.00 106 m/s at an angle of 37.0 with the direction of a magnetic field of 0.300 T in the +y direction. What are (a) the magnitude of the magnetic force on the proton and (b) its acceleration?arrow_forward
- (a) A physicist performing a sensitive measurement wants to limit the magnetic force on a moving charge in her equipment to less than 1.001012N. What is the greatest the charge can be if it moves at a maximum speed of 30.0 m/s in Earth's field? (b) Discuss whether it would be difficult to limit the charge to less than the value found in (a) by comparing it with typical static electricity' and noting that static is often absent,arrow_forwardAn electron moving with a velocity v=(4.0i+3.0j+2.0k)106m/s enters a region where there is a uniform electric field and a uniform magnetic field. The magnetic field is given by v=(1.0i2.0j+4.0k)102T. If the electron travels through a region without being deflected, what is the electric field?arrow_forwardThe magnitude of the magnetic field 50 cm from a long, thin, straight wire is 8.0T . What is the current through the long wire?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning