Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 23P
(III) A very long
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need it in 30 mints
Thank you :)
Three nonconducting strips are bent to form arcs and, when assembled, they form part of a circle of radius r-6.47 cm. The three strips have linear charge densities of ₁88.0 nC/m, 12-179 nC/m, and 23-26 nC/m, respectively, and subtend angles of 60°, 120°, and 45°, respectively, at
the center.
120
λ₁
2₂
(a) Determine the electric potential at the center of the circle of which the strips form a part.
V
(b) You use a fourth nonconducting strip to close the circle. What should be the linear charge density on this strip if the potential at the center of the circle is to be zero?
nc/m
Chapter 23 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 23.2 - CHAPTER-OPENING QUESTIONGuess now! Consider a pair...Ch. 23.2 - On a dry day, a person can become electrically...Ch. 23.3 - What is the potential at a distance of 3.0cm from...Ch. 23.3 - Consider the three pairs of charges, Q1, and Q2,...Ch. 23.8 - Prob. 1EECh. 23.8 - The kinetic energy of a 1000-kg automobile...Ch. 23 - If two points are at the same potential, does this...Ch. 23 - If a negative charge is initially at rest in an...Ch. 23 - State clearly the difference (a) between electric...Ch. 23 - An electron is accelerated by a potential...
Ch. 23 - Can a particle ever move from a region of low...Ch. 23 - If V = 0 at a point in space, must E=0? If E=0 at...Ch. 23 - When dealing with practical devices, we often take...Ch. 23 - Can two equipotential lines cross? Explain.Ch. 23 - Draw in a few equipotential lines in Fig, 2134b...Ch. 23 - What can you say about the electric field in a...Ch. 23 - A satellite orbits the Earth along a gravitational...Ch. 23 - Suppose the charged ring of Example 238 was not...Ch. 23 - Consider a metal conductor in the shape of a...Ch. 23 - Equipotential lines are spaced 1.00 V apart. Does...Ch. 23 - A conducting sphere carries a charge Q and a...Ch. 23 - At a particular location, the electric field...Ch. 23 - Equipotential lines are spaced 1.00 V apart. Does...Ch. 23 - If the electric field E is uniform in a region,...Ch. 23 - Is the electric potential energy of two unlike...Ch. 23 - (I) What potential difference is needed to stop an...Ch. 23 - (I) How much work does the electric field do in...Ch. 23 - (I) An electron acquires 5.25 1016 J of kinetic...Ch. 23 - (II) The work done by an external force to move a...Ch. 23 - (I) Thunderclouds typically develop voltage...Ch. 23 - (I) The electric field between two parallel plates...Ch. 23 - (I) What is the maximum amount of charge that a...Ch. 23 - (I) What is the magnitude of the electric field...Ch. 23 - (I) What minimum radius must a large conducting...Ch. 23 - (II) A manufacturer claims that a carpet will not...Ch. 23 - (II) A uniform electric field E=4.20N/Ci points in...Ch. 23 - (II) The electric potential of a very large...Ch. 23 - (II) The Earth produces an inwardly directed...Ch. 23 - (II) A 32-cm-diameter conducting sphere is charged...Ch. 23 - (II) An insulated spherical conductor of radius r1...Ch. 23 - (II) Determine the difference in potential between...Ch. 23 - (II) Suppose the end of your finger is charged....Ch. 23 - (II) Estimate the electric field in the membrane...Ch. 23 - (II) A nonconducting sphere of radius r0 carries a...Ch. 23 - (III) Repeat Problem 19 assuming the charge...Ch. 23 - (III) The volume charge density E within a sphere...Ch. 23 - (III) A hollow spherical conductor, carrying a net...Ch. 23 - (III) A very long conducting cylinder (length ) of...Ch. 23 - (I) A point charge Q creates an electric potential...Ch. 23 - (I) (a) What is the electric potential 0.50 1010...Ch. 23 - (a) Because of the inverse square nature of the...Ch. 23 - (II) +25C point charge is placed 6.0 cm from an...Ch. 23 - (II) Point a is 26 cm north of a 3.8 C point...Ch. 23 - (II) How much voltage must be used to accelerate a...Ch. 23 - (II) Two identical +5.5 C point charges are...Ch. 23 - (II) An electron starts from rest 42.5cm from a...Ch. 23 - (II) Two equal but opposite charges are separated...Ch. 23 - (II) A thin circular ring of radius R (as in Fig....Ch. 23 - (II) Three point charges are arranged at the...Ch. 23 - (II) A flat ring of inner radius R1 and outer...Ch. 23 - (II) A total charge Q is uniformly distributed on...Ch. 23 - (II) A 12.0-cm-radius thin ring carries a...Ch. 23 - (II) A thin rod of length 2 is centered on the x...Ch. 23 - (II) Determine the potential V(x) for points along...Ch. 23 - (III) The charge on the rod of Fig. 2331 has a...Ch. 23 - (III) Suppose the flat circular disk of Fig. 2315...Ch. 23 - (I) Draw a conductor in the shape of a football....Ch. 23 - (II) Equipotential surfaces are to be drawn 100 V...Ch. 23 - (II) A metal sphere of radius r0 = 0.44 m carries...Ch. 23 - (II) Calculate the electric potential due to a...Ch. 23 - (III) The dipole moment, considered as a vector,...Ch. 23 - (I) Show that the electric field of a single point...Ch. 23 - (I) What is the potential gradient just outside...Ch. 23 - (II) The electric potential between two parallel...Ch. 23 - () The electric potential in a region of space...Ch. 23 - (II) In a certain region of space, the electric...Ch. 23 - (II) A dust particle with mass of 0.050 g and a...Ch. 23 - (III) Use the results or Problems 38 and 39 to...Ch. 23 - (I) How much work must be done to bring three...Ch. 23 - (I) What potential difference is needed to give a...Ch. 23 - (I) What is the speed of (a) a 1.5-keV (kinetic...Ch. 23 - (II) Many chemical reactions release energy....Ch. 23 - (II) An alpha particle (which is a helium nucleus,...Ch. 23 - (II) Write the total electrostatic potential...Ch. 23 - (II) Four equal point charges, Q, are fixed at the...Ch. 23 - (II) An electron starting from rest acquires 1.33...Ch. 23 - (II) Determine the total electrostatic potential...Ch. 23 - (II) The liquid-drop model of the nucleus suggests...Ch. 23 - (III) Determine the total electrostatic potential...Ch. 23 - (I) Use the ideal gas as a model to estimate the...Ch. 23 - (III) Electrons are accelerated by 6.0kV in a CRT....Ch. 23 - (III) In a given CRT, electrons are accelerated...Ch. 23 - If the electrons in a single raindrop, 3.5 mm in...Ch. 23 - By rubbing a nonconducting material, a charge of...Ch. 23 - Sketch the electric field and equipotential lines...Ch. 23 - A +33 C point charge is placed 36 cm from an...Ch. 23 - At each corner of a cube of side there is a point...Ch. 23 - In a television picture tube (CRT), electrons are...Ch. 23 - Four point charges are located at the corners of a...Ch. 23 - In a photocell, ultraviolet (UV) light provides...Ch. 23 - An electron is accelerated horizontally from rest...Ch. 23 - Three charges are at the corners of an equilateral...Ch. 23 - Near the surface of the Earth there is an electric...Ch. 23 - A lightning flash transfers 4.0 C of charge and...Ch. 23 - Determine the components of the electric field. Ex...Ch. 23 - A nonconducting sphere of radius r2 contains a...Ch. 23 - A thin flat nonconducting disk, with radius R0 and...Ch. 23 - A Geiger counter is used to detect charged...Ch. 23 - A Van de Graaff generator (Fig. 2341) can develop...Ch. 23 - The potential in a region of space is given by V =...Ch. 23 - A charge q1 of mass m rests on the y axis at a...Ch. 23 - (II) A dipole is composed of a 1.0 nC charge at x...Ch. 23 - (II) A thin flat disk of radius R0 carries a total...Ch. 23 - (III) You are trying to determine an unknown...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The falling speedometer of Figure 2.24 shows readings of speed as it falls. How would the readings of speed dif...
Conceptual Integrated Science
If acceleration is proportional to the net force or is equal to net force.
Conceptual Physics (12th Edition)
25. A ball of mass m oscillates on a spring with spring constant k = 200 N/m. The ball’s position is x = (0.350...
College Physics: A Strategic Approach (3rd Edition)
Set up the circuit containing two bulbs in series as shown. Rank from largest to smallest the currents through ...
Tutorials in Introductory Physics
Choose the best answer to each of the following. Explain your reasoning. Which of the following was not a major...
The Cosmic Perspective Fundamentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The electric potential inside a charged spherical conductor of radius R is given by V = keQ/R, and the potential outside is given by V = keQ/R, Using Er = dV/dr, derive the electric field (a) inside and (b) outside this charge distribution.arrow_forwardHow many electrons should be removed from an initially uncharged spherical conductor of radius 0.300 m to produce a potential of 7.50 kV at the surface?arrow_forwardShown below are two concentric spherical shells of negligible thicknesses and radii R1and R2The inner and outer shell carry net charges q1and q2 respectively where both q1 and q2 positive. What is the electric potential in the regions potential in the regions (a) r R2?arrow_forward
- A small spherical pith ball of radius 0.50 cm is painted with a silver paint and then -10 C of charge is placed on it. The charged pith ball is put at the center of a gold spherical shell of inner radius 2.0 cm and outer radius 2.2 cm. (a) Find the electric potential of the gold shell with respect to zero potential at infinity, (b) How much charge should you put on the gold shell if you want to make its potential 100 V?arrow_forwardAn electric potential exists in a region of space such that V = 8x4 2y2 + 9z3 and V is in units of volts, when x, y, and z are in meters. a. Find an expression for the electric field as a function of position. b. What is the electric field at (2.0 m, 4.5 m, 2.0 m)?arrow_forwardA point charge of q=50108 C is placed at the center of an uncharged spherical conducting shell of inner radius 6.0 cm and outer radius 9.0 cm. Find the electric potential at (a) r = 4,0cm, (b) r = 8.0 cm, (c) r — 12.0 cm.arrow_forward
- A metallic sphere of radius 2.0 cm is charged with +5.0C charge, which spreads on the surface of the sphere uniformly. The metallic sphere stands on an insulated stand and is surrounded by a larger metallic spherical shell, of inner radius 5.0 cm and outer radius 6.0 cm. Now, a charge of 5.0C is placed on the inside of the spherical shell, which spreads out uniformly on the inside surface of the shell. If potential is zero at infinity, what is the potential of (a) the spherical shell, (b) the sphere, (c) the space between the two, (d) inside the sphere, and (e) outside the shell?arrow_forwardA filament running along the x axis from the origin to x = 80.0 cm carries electric charge with uniform density. At the point P with coordinates (x = 80.0 cm, y = 80.0 cm), this filament creates electric potential 100 V. Now we add another filament along the y axis, running from the origin to y = 80.0 cm, carrying the same amount of charge with the same uniform density. At the same point P, is the electric potential created by the pair of filaments (a) greater than 200 V, (b) 200 V, (c) 100 V, (d) between 0 and 200 V, or (e) 0?arrow_forwardThe three charged particles in Figure P20.11 are at the vertices of an isosceles triangle (where d = 2.00 cm). Taking q = 7.00 C, calculate the electric potential at point A, the midpoint of the base. Figure P20.11arrow_forward
- A filament running along the x axis from the origin to x = 80.0 cm carries electric charge with uniform density. At the point P with coordinates (x = 80.0 cm, y = 80.0 cm), this filament creates electric potential 100 V. Now we add another filament along the y axis, running from the origin to y = 80.0 cm. carrying the same amount of charge with the same uniform density. At the same point P, is the electric potential created by the pair of filaments (a) greater than 200 V, (b) 200 V, (c) 100 V, (d) between 0 and 200 V, or (e) 0?arrow_forwardFour particles are positioned on the rim of a circle. The charges on the particles are +0.500 C, +1.50 C, 1.00 C, and 0.500 C. If the electric potential at the center of the circle due to the +0.500 C charge alone is 4.50 104 V, what is the total electric potential at the center due to the four charges? (a) 18.0 104 V (b) 4.50 104 V (c) 0 (d) 4.50 104 V (e) 9.00 104 Varrow_forwardTwo large charged plates of charge density 30C/m2 face each other at a separation of 5.0 mm. (a) Find the electric potential everywhere, (b) An electron is released from rest at the negative plate; with what speed will it strike the positive plate?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY