College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
One mole of an ideal gas is warmed slowly so that it goes from the PV state (100 kPa, 1.0 m3) to (300 kPa, 3.0 m3) in such a way that the pressure of the gas is directly proportional to the volume. How much work is done on the gas in the process?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A gas has a constant pressure of 3000Pa. It is isobarically expanded from 0.75m^3 to 1.25m^3. During the process, 100J of thermal energy is added through heat. a) What is the work done on the gas? b) What is the change in internal energy of the gas?arrow_forwardA sample of helium behaves as an ideal gas as it is heated at constant pressure from 273 K to 386 K. If 24.0 J of work is done by the gas during this process, what is the mass of helium present?arrow_forwardA sample of helium behaves as an ideal gas as it is heated at constant pressure from 273 K to 403 K. If 22.0 J of work is done by the gas during this process, what is the mass of helium present? mgarrow_forward
- Consider the following figure. (The x axis is marked in increments of 2 m³.) P (Pa) 6 X 106 4 X 106 2 X 106 V (m³) (a) Determine the work done on a gas that expands from i to f as indicated in the figure. MJ Ⓡ (b) How much work is performed on the gas if it is compressed from f to i along the same path? MJarrow_forwardA cylinder of volume 0.320 m3 contains 10.5 mol of neon gas at 17.4°C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? Pa(b) Find the internal energy of the gas. J(c) Suppose the gas expands at constant pressure to a volume of 1.000 m3. How much work is done on the gas? J(d) What is the temperature of the gas at the new volume? K(e) Find the internal energy of the gas when its volume is 1.000 m3. J(f) Compute the change in the internal energy during the expansion. J(g) Compute ΔU − W. J(h) Must thermal energy be transferred to the gas during the constant pressure expansion or be taken away? This answer has not been graded yet. (i) Compute Q, the thermal energy transfer. J(j) What symbolic relationship between Q, ΔU, and W is suggested by the values obtained?arrow_forwardTwo containers each hold 1 mole of an ideal gas at 1 atm. Container A holds a monatomic gas and container B holds a diatomic gas. The volume of each container is halved while the pressure is held constant. (Assume the initial volumes of containers A and B are equal.) (c) What is the ratio QA QB of the energy transferred to gases A and B?arrow_forward
- You have an ideal gas that expands from 0.50 to 4.0 L at a constant temperature of 300K. The gas does 250 J of work. How many moles of gas are there?arrow_forwardA sealed cylinder has a piston and contains 8.90×103 cm3 of an ideal gas at a pressure of 7.50 atm. Heat is slowly introduced, and the gas isothermally expands to 1.70×104 cm3. How much work ? does the gas do on the piston?arrow_forwardOne mole of an ideal gas does 3900 J of work as it expands isothermally to a final pressure of 1.00 atm and volume of 0.022 m3. What was the initial volume of the gas, in cubic meters? What is the temperature of the gas, in kelvin?arrow_forward
- tab Consider the following figure. (The x axis is marked in increments of 2.5 m³.) P (Pa). esc caps lock 6 x 106 4 X 106 2 x 106 V (m³) 1 (a) Determine the work done on a gas that expands from i to f as indicated in the figure. MJ (b) How much work is performed on the gas if it is compressed from f to / along the same path? MJ ! 1 F1 A NO 2 N FF 200 F2 W S # 3 80 F3 X E * D $ 4 F4 R C % 5 F MacBook Air T V の‥ 6 F6 G & 7 F7 H B 2 Earrow_forwardA sample of ideal gas in a thermally insulated container with a movable piston is initially in state A. The gas is taken from state A to state B by an adiabatic process. The dashed lines represent isotherms. If W is the work done on the gas, Q is the energy transferred to the gas by heating, and Delta U be the change in the internal energy of the gas during the process. a) is W greater than zero, zero, or less than zero? Explain briefly b) is Q greater than zero, zero, or less than zero? Explain briefly. c) is Delta U greater than zero, zero, or less than zero? Explain briefly.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON