PEARSON ETEXT ENGINEERING MECH & STATS
PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 17, Problem 1P

Determine the moment of inertia Iy for the slender rod. The rod's density ρ end cross-sectional area. A are constant. Express the result in terms of the rod’s total mass m.

Chapter 17, Problem 1P, Determine the moment of inertia Iy for the slender rod. The rod's density  end cross-sectional area.

Expert Solution & Answer
Check Mark
To determine

The moment of inertia Iy for the slender rod in terms of the rod’s total mass m .

Answer to Problem 1P

The moment of inertia Iy for the slender rod in terms of the rod’s total mass m is ml23 .

Explanation of Solution

Given:

The density of the rod is ρ .

The cross-sectional area of the rod is A .

Show the intersection of slender rod at the arbitrary point (x,y,z) as in Figure (1).

PEARSON ETEXT ENGINEERING MECH & STATS, Chapter 17, Problem 1P

Conclusion:

From the Figure 1,

Calculate the differential mass of the slender rod.

dm=ρdV (I)

Here, density of material is ρ , and the volume of the slender rod is V .

Substitute Adx for dV in Equation (I).

dm=ρAdx

Calculate the entire mass of the slender rod.

m=Mdm (II)

Substitute ρAdx for dm in Equation (II).

m=MρAdx=0lρAdx=ρA0ldx

=ρA(x)|0l=ρAl

Express the moment of inertia of the slender rod about the y axis.

Iy=Mx2dm (III)

Substitute ρAdx for dm in Equation (III).

Iy=Mx2(ρAdx)=0lx2(ρAdx)=ρA0lx2dx=ρA[x33]|0l

=ρAl33=13ρAl3=13l2(ρAl) (IV)

Substitute m for ρAl in Equation (IV).

Iy=13l2(m)=ml23

Hence, the moment of inertia Iy for the slender rod in terms of the rod’s total mass m is ml23 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Determine the moment of inertia of the homogenous triangular prism with respect to the y axis. Express the result in terms of the mass m of the prism. Hint: For integration, use thin plate elements parallel to the x–y plane having a thickness of dz.
The paraboloid is formed by revolving the shaded area around the x axis. The material has a constant density ρ. Determine the moment of inertia about the x axis and express the result in terms of the total mass m of the paraboloid.
Determine the moment of inertia of mass with respect to the x' axis that passes through the structure's center of gravity and is parallel to the x axis. The cone has a density of 6000 kg/m3 and the cylinder a density of 8000 kg/m3. Consider H = 83

Chapter 17 Solutions

PEARSON ETEXT ENGINEERING MECH & STATS

Ch. 17 - Determine the location y of the center of mass G...Ch. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Determine the moment of inertia of the wheel about...Ch. 17 - The pendulum consists of the 3-kg slender rod and...Ch. 17 - Prob. 22PCh. 17 - Determine the moment of inertia of the overhung...Ch. 17 - Prob. 1FPCh. 17 - Prob. 2FPCh. 17 - Prob. 3FPCh. 17 - Prob. 4FPCh. 17 - At the instant shown both rods of negligible mass...Ch. 17 - Prob. 6FPCh. 17 - The door has a weight of 200 lb and a center of...Ch. 17 - The door has a weight or 200 lb and a center of...Ch. 17 - The jet aircraft has a total mass of 22 Mg and a...Ch. 17 - The sports car has a weight of 4500 lb and center...Ch. 17 - The bar has a weight per length w and is supported...Ch. 17 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17 - Prob. 44PCh. 17 - If the carts mass is 30 kg and it is subjected to...Ch. 17 - Prob. 50PCh. 17 - Prob. 53PCh. 17 - Prob. 54PCh. 17 - The 100-kg wheel has a radius of gyration about...Ch. 17 - Prob. 8FPCh. 17 - Prob. 9FPCh. 17 - Prob. 10FPCh. 17 - Prob. 11FPCh. 17 - Prob. 12FPCh. 17 - The 10-kg wheel has a radius of gyration kA = 200...Ch. 17 - The uniform 24-kg plate is released from rest at...Ch. 17 - The uniform slender rod has a mass m. If it is...Ch. 17 - The tent rod has a mass of 2 kg/m. If it is...Ch. 17 - Disk A has a weight of 5 lb and disk B has a...Ch. 17 - Prob. 66PCh. 17 - The reel of cable has a mass of 400 kg and a...Ch. 17 - Prob. 72PCh. 17 - Cable is unwound from a spool supported on small...Ch. 17 - The 5-kg cylinder is initially at rest when it is...Ch. 17 - Prob. 76PCh. 17 - Disk D turns with a constant clockwise angular...Ch. 17 - Prob. 78PCh. 17 - Prob. 81PCh. 17 - Prob. 85PCh. 17 - The Catherine wheel is a firework that consists of...Ch. 17 - The uniform 60-kg slender bar is initially at rest...Ch. 17 - Prob. 14FPCh. 17 - Prob. 15FPCh. 17 - The 20- kg sphere rolls down the inclined plane...Ch. 17 - The 200-kg spool has a radius of gyration about...Ch. 17 - The 12-kg slender rod is pinned to a small roller...Ch. 17 - If the disk in Fig. 17-19 rolls without slipping,...Ch. 17 - The uniform 150-lb beam is initially at rest when...Ch. 17 - The spool has a mass of 100 kg and a radius of...Ch. 17 - Solve Prob.17-96 if the cord and force P = 50 N...Ch. 17 - The spool has a mass of 100 kg and a radius of...Ch. 17 - A force of F= 10 N is applied to the 10-kg ring as...Ch. 17 - If the coefficient of static friction at C is s =...Ch. 17 - If P = 30 lb, determine the angular acceleration...Ch. 17 - If the coefficient of static friction between the...Ch. 17 - The semicircular disk having a mass of 10 leg is...Ch. 17 - The circular concrete culvert rols with an angular...Ch. 17 - The uniform disk of mass m is rotating with an...Ch. 17 - The uniform disk of mass m is rotating with an...Ch. 17 - The uniform beam has a weight W. If it is...Ch. 17 - The 500-lb beam is supported at A and B when it is...Ch. 17 - Prob. 1RPCh. 17 - Prob. 2RPCh. 17 - Prob. 3RPCh. 17 - Prob. 4RPCh. 17 - Prob. 5RPCh. 17 - Prob. 6RPCh. 17 - Prob. 7RPCh. 17 - Prob. 8RP

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
moment of inertia; Author: NCERT OFFICIAL;https://www.youtube.com/watch?v=A4KhJYrt4-s;License: Standard YouTube License, CC-BY