College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 44P
A student waiting at a stoplight notices that her turn signal, which has a period of 0.85 s, makes one blink exactly in sync with the turn signal of the car in front of her. The blinker of the car ahead then starts to get ahead, but 17 s later the two are exactly in sync again. What is the period of the blinker of the other car?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A ladybug sits 10.5 cm from the center of a turntable spinning at 33.33 rpm. The Sun is shining horizontally through the window and the shadow of the ladybug can be seen traveling back and forth across the wall behind the turntable.
What is the maximum velocity, in meters per second, of the shadow on the wall?
An enormous thunderstorm covers Dallas-Ft. Worth. Your best friend Clark is a storm chaser and heads to the center of the storm
to take some readings while you stay dry at home. While Clark is at the center of the storm, he sees and hears lightning strike a
tree that is 150 m from where he is standing. You are 132 km from the tree. How long does it take for the sound to reach Clark?
Assume the speed of sound is 343 m/s.
How long does it take for the light to reach you?
S
A lady bug sits 11.5 cm from the center of a turntable spinning at 33.33 rpm. The Sun is shining horizontally through the window and the shadow of the ladybug can be seen traveling back and forth across the wall behind the turntable.
What is the maximum velocity of the shadow on the wall
Chapter 16 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 16 - Light can pass easily through water and through...Ch. 16 - Ocean waves are partially reflected from the...Ch. 16 - A string has an abrupt change in linear density at...Ch. 16 - A guitarist finds that the pitch of one of her...Ch. 16 - Certain illnesses inflame your vocal cords,...Ch. 16 - Figure Q16.6 shows a standing wave on a string...Ch. 16 - Figure Q16.7 shows a standing sound wave in a tube...Ch. 16 - A typical flute is about 66 cm long. A piccolo is...Ch. 16 - Some pipes on a pipe organ are open at both ends,...Ch. 16 - A friends voice sounds different over the...
Ch. 16 - Suppose you were to play a trumpet after breathing...Ch. 16 - If you pour liquid in a tall, narrow glass, you...Ch. 16 - When you speak after breathing helium, in which...Ch. 16 - Sopranos can sing notes at very high...Ch. 16 - A synthesizer is a keyboard instrument that can be...Ch. 16 - If a cold gives you a stuffed-up nose, it changes...Ch. 16 - A small boy and a grown woman both speak at...Ch. 16 - At x = 3 cm, what is the earliest time that y will...Ch. 16 - Two sinusoidal waves with the same amplitude A and...Ch. 16 - A student in her physics lab measures the...Ch. 16 - Prob. 23MCQCh. 16 - Resonances of the ear canal lead to increased...Ch. 16 - The frequency of the lowest standing-wave mode on...Ch. 16 - Suppose you pluck a string on a guitar and it...Ch. 16 - Figure P16.11 is a snapshot graph at t = 0 s of...Ch. 16 - Figure P16.2 is a snapshot graph at t = 0 s of two...Ch. 16 - Figure P16.3a is a snapshot graph at t = 0 s of...Ch. 16 - Figure P16.4 is a snapshot graph at t = 0 s of two...Ch. 16 - Figure P16.4 is a snapshot graph at t = 0 s of two...Ch. 16 - Figure P16.6 is a snapshot graph at t = 0 s of a...Ch. 16 - At t = 0 s, a small upward (positive y) pulse...Ch. 16 - You are holding one end of an elastic cord that is...Ch. 16 - A 2.0-m-long string is fixed at both ends and...Ch. 16 - Figure P16.10 shows a standing wave oscillating at...Ch. 16 - A bass guitar string is 89 cm long with a...Ch. 16 - Prob. 12PCh. 16 - a. What are the three longest wavelengths for...Ch. 16 - A 121-cm-long, 4.00 g string oscillates in its m =...Ch. 16 - Prob. 15PCh. 16 - A violin string has a standard length of 32.8 cm....Ch. 16 - The lowest note on a grand piano has a frequency...Ch. 16 - An experimenter finds that standing waves on a...Ch. 16 - Ocean waves of wavelength 26 m are moving directly...Ch. 16 - Prob. 20PCh. 16 - The contrabassoon is the wind instrument capable...Ch. 16 - Figure P16.22 shows a standing sound wave in an...Ch. 16 - Prob. 23PCh. 16 - An organ pipe is made to play a low note at 27.5...Ch. 16 - The speed of sound in room temperature (20C) air...Ch. 16 - Parasaurolophus was a dinosaur whose...Ch. 16 - A drainage pipe running under a freeway is 30.0 m...Ch. 16 - Some pipe organs create sounds lower than humans...Ch. 16 - Although the vocal tract is quite complicated, we...Ch. 16 - You know that you sound better when you sing in...Ch. 16 - A child has an ear canal that is 1.3 cm long. At...Ch. 16 - When a sound wave travels directly toward a hard...Ch. 16 - The first formant of your vocal system can be...Ch. 16 - When you voice the vowel sound in hat, you narrow...Ch. 16 - The first and second formants when you make an ee...Ch. 16 - Two loudspeakers in a 20C room emit 686 Hz sound...Ch. 16 - Two loudspeakers emit sound waves along the...Ch. 16 - In noisy factory environments, its possible to use...Ch. 16 - Two identical loudspeakers separated by distance d...Ch. 16 - Two identical loudspeakers 2.0 m apart are...Ch. 16 - Prob. 42PCh. 16 - Musicians can use beats to tune their instruments....Ch. 16 - A student waiting at a stoplight notices that her...Ch. 16 - Two strings are adjusted to vibrate at exactly 200...Ch. 16 - A childs train whistle replicates a classic...Ch. 16 - A flute player hears four beats per second when...Ch. 16 - Prob. 48GPCh. 16 - In addition to producing images, ultrasound can be...Ch. 16 - An 80-cm-long steel string with a linear density...Ch. 16 - Tendons are, essentially, elastic cords stretched...Ch. 16 - A string, stretched between two fixed posts, forms...Ch. 16 - Spiders may tune strands of their webs to give...Ch. 16 - Prob. 54GPCh. 16 - Prob. 55GPCh. 16 - Lake Erie is prone to remarkable seichesstanding...Ch. 16 - Prob. 57GPCh. 16 - Prob. 58GPCh. 16 - A 40-cm-long tube has a 40-cm-long insert that can...Ch. 16 - The width of a particular microwave oven is...Ch. 16 - Two loudspeakers located along the x-axis as shown...Ch. 16 - Two loudspeakers 42.0 m apart and facing each...Ch. 16 - You are standing 2.50 m directly in front of one...Ch. 16 - Two loudspeakers, 4.0 m apart and facing each...Ch. 16 - Piano tuners tune pianos by listening to the beats...Ch. 16 - A flutist assembles her flute in a room where the...Ch. 16 - A Doppler blood flowmeter emits ultrasound at a...Ch. 16 - An ultrasound unit is being used to measure a...Ch. 16 - Prob. 70MSPPCh. 16 - Prob. 71MSPPCh. 16 - Prob. 72MSPPCh. 16 - Prob. 73MSPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
A Slice of pizza has 500 kcal. If we could burn the pizza and use all the heat to warm a 50-L container of cold...
Campbell Biology in Focus (2nd Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
What are the minimum and maximum ages of the island of Kauai? Minimum age: ______million yr Maximum age: ______...
Applications and Investigations in Earth Science (9th Edition)
Thiols such as ethanethiol and propanethiol can be used to reduce vitamin K epoxide to vitamin KH2, but they re...
Organic Chemistry (8th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
28. As the earth mates, what is the speed of (a) a physics student in Miami. Florida. at latitude 26°, and (b) ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At rest, a cars horn sounds the note A (440 Hz). The horn is sounded while the car is moving down the street. A bicyclist moving in the same direction with one-third the cars speed hears a frequency of 415 Hz. (a) Is the cyclist ahead of or behind the car? (b) What is the speed of the car?arrow_forwardA student drops a water-filled balloon from the roof of the tallest building in town trying to hit her roommate on the ground (who is too quick). The first student ducks back but hears the water splash 4.021 s after dropping the balloon. If the speed of sound is 331 m/s, find the height of the building, neglecting air resistance.arrow_forwardA LaGuardia Physics Professor drops a stone into a well. How deep is the well if the Professor hears the sound from the stone hitting the bottom of the well 3.05 s later? Neglect the air resistance and take the free fall acceleration g = 9.81 m/s². The air temperature is T = 15.5°C. The depth of the well, h = 1037 How long did it take for the sound to travel back? The time, t = 3 x Units s Submit Question x Units m Question Help: Message instructor ✓✓.arrow_forward
- An elephant has legs that stretch 2.30 m from its shoulders to the ground. How much time is required for one leg to swing forward after completing a stride? What would you predict for this elephant's stride frequency? That is, how many steps per minute will the elephant take?arrow_forwardA cannon fires a shell directly at you from 2000 m away, at a speed of 216 m/s. The speed of sound in the air is 346 m/a. If your eyes have been plucked out by an angry seagull, how long do you have to react after hearing the shot?arrow_forwardOn December 26, 2004, a great earthquake occurred off the coast of Sumatra and triggered immense waves (tsunami) that killed some 200000 people. Satellites observing these waves from space measured 800 km from one wave crest to the next and a period between waves of 1.0 hour. The speed of the waves were 800 km/h. How does the speed of the wave help you understand why the waves caused such devastation?arrow_forward
- What is the displacement Δx of the particle?arrow_forwardAn enormous thunderstorm covers Dallas-Ft. Worth. Your best friend Clark is a storm chaser and heads to the center of the storm to take some readings while you stay dry at home. While Clark is at the center of the storm, he sees and hears lightning strike a tree that is 184 m from where he is standing. You are 144 km from the tree. How long does it take for the sound to reach Clark? Assume the speed of sound is 343 m/s.________________ sHow long does it take for the light to reach you?_____________ sarrow_forwardAn FM radio station broadcasts at a frequency f = 107.5 MHz. This means that the radio signal oscillates 107.5 million times each second. What is the period, T, of this oscillation?arrow_forward
- 4. An observer is standing on the platform of a railway station. A train goes through the station without stopping. If the frequency of the train whistle decreases by a factor of 1/4 as it approaches and then passes him, calculate the speed of the train (assume the speed of sound in air = 343 m/s).arrow_forwardThis is possibly a different atmosphere from ours. In any case, the speed of sound is computer-generated, and is 454 m/s this time. Light travels for us instantaneously. You see a lightning flash, and 7.6 seconds later, you hear the thunderbolt. How far away was the lightning (in meters)?arrow_forwardWhile hunting for moths to eat, a bat emits a chirp that lasts for 2.10 ms and then is silent while it listens for the echo. If the beginning of the echo returns just after the outgoing chirp is finished, how close to the moth is the bat? The bat is flying toward the moth at a speed of 4.40 m/s and the moth is flying away from the bat at 1.20 m/s. Assume it is a cool night with a temperature of 10.0°C. Speed of sound in air at 0°C is 331 m/s (see table 12.1). in cmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY