Introductory Chemistry: Concepts and Critical Thinking (8th Edition)
8th Edition
ISBN: 9780134421377
Author: Charles H Corwin
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 15, Problem 53E
Interpretation Introduction
Interpretation:
The kilograms of seawater to be evaporated to obtain the
Concept introduction:
Mole concept uses a specific quantity called moles to define the amount of substance. It relates the molar mass, given mass and also the molar volume to a specific constant also known as the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Introductory Chemistry: Concepts and Critical Thinking (8th Edition)
Ch. 15 - Prob. 1CECh. 15 - Prob. 2CECh. 15 - Prob. 3CECh. 15 - Prob. 4CECh. 15 - Prob. 5CECh. 15 - Prob. 6CECh. 15 - Prob. 7CECh. 15 - Prob. 8CECh. 15 - Prob. 9CECh. 15 - Prob. 1KT
Ch. 15 - Prob. 2KTCh. 15 - Prob. 3KTCh. 15 - Prob. 4KTCh. 15 - Prob. 5KTCh. 15 - Prob. 6KTCh. 15 - Prob. 7KTCh. 15 - Prob. 8KTCh. 15 - Prob. 9KTCh. 15 - Prob. 10KTCh. 15 - Prob. 11KTCh. 15 - Prob. 12KTCh. 15 - Prob. 13KTCh. 15 - Prob. 14KTCh. 15 - Prob. 15KTCh. 15 - Prob. 16KTCh. 15 - Prob. 17KTCh. 15 - Prob. 18KTCh. 15 - Prob. 19KTCh. 15 - Prob. 20KTCh. 15 - Prob. 21KTCh. 15 - Prob. 22KTCh. 15 - Prob. 1ECh. 15 - Prob. 2ECh. 15 - Prob. 3ECh. 15 - Prob. 4ECh. 15 - Prob. 5ECh. 15 - Prob. 6ECh. 15 - Prob. 7ECh. 15 - Prob. 8ECh. 15 - Prob. 9ECh. 15 - Prob. 10ECh. 15 - Prob. 11ECh. 15 - Prob. 12ECh. 15 - Prob. 13ECh. 15 - Prob. 14ECh. 15 - Prob. 15ECh. 15 - Prob. 16ECh. 15 - Prob. 17ECh. 15 - Prob. 18ECh. 15 - Prob. 19ECh. 15 - Prob. 20ECh. 15 - Prob. 21ECh. 15 - Prob. 22ECh. 15 - Prob. 23ECh. 15 - Prob. 24ECh. 15 - Prob. 25ECh. 15 - Prob. 26ECh. 15 - Prob. 27ECh. 15 - Prob. 28ECh. 15 - Prob. 29ECh. 15 - Prob. 30ECh. 15 - Prob. 31ECh. 15 - Prob. 32ECh. 15 - Prob. 33ECh. 15 - Prob. 34ECh. 15 - Prob. 35ECh. 15 - Prob. 36ECh. 15 - Prob. 37ECh. 15 - Prob. 38ECh. 15 - Prob. 39ECh. 15 - Prob. 40ECh. 15 - Prob. 41ECh. 15 - Prob. 42ECh. 15 - Prob. 43ECh. 15 - Prob. 44ECh. 15 - Prob. 45ECh. 15 - Prob. 46ECh. 15 - Prob. 47ECh. 15 - Prob. 48ECh. 15 - Prob. 49ECh. 15 - Prob. 50ECh. 15 - Prob. 51ECh. 15 - Prob. 52ECh. 15 - Prob. 53ECh. 15 - Prob. 54ECh. 15 - Prob. 55ECh. 15 - Prob. 56ECh. 15 - Prob. 57ECh. 15 - Prob. 58ECh. 15 - Prob. 59ECh. 15 - Prob. 60ECh. 15 - Prob. 1STCh. 15 - Prob. 2STCh. 15 - Prob. 3STCh. 15 - Prob. 4STCh. 15 - Prob. 5STCh. 15 - Prob. 6STCh. 15 - Prob. 7STCh. 15 - Prob. 8STCh. 15 - Prob. 9STCh. 15 - Prob. 10STCh. 15 - Prob. 11STCh. 15 - Prob. 12STCh. 15 - Prob. 13STCh. 15 - Prob. 14STCh. 15 - Prob. 15STCh. 15 - Prob. 16ST
Knowledge Booster
Similar questions
- What mass of solid NaOH (97.0% NaOH by mass) is required to prepare 1.00 L of a 10.0% solution of NaOH by mass? The density of the 10.0% solution is 1.109 g/mL.arrow_forwardWhat is the mass of fish, in kilograms, that one would have to consume to obtain a fatal dose of mercury, if the fish contains 30 parts per million of mercury by weight? (Assume that all the mercury from the fish ends up as mercury (II) chloride in the body and that a fatal dose is 0.20 g of HgCl2.) How many pounds of fish is this?arrow_forwardThe present average concentration (mass percent) of magnesium ions in seawater is 0.13%. A chemistry textbook estimates that if 1.00 × 108 tons Mg were taken out of the sea each year, it would take one million years for the Mg concentration to drop to 0.12%. Do sufficient calculations to either verify or refute this statement. Assume that Earth is a sphere with a diameter of 8000 mi, 67% of which is covered by oceans to a depth of 1 mi, and that no Mg is washed back into the oceans at any time.arrow_forward
- Assume that the radius of Earth is 6400 km, the crust is 50. km thick, the density of the crust is 3.5 g/cm3, and 25.7% of the crust is silicon by mass. Calculate the total mass of silicon in the crust of Earth.arrow_forwardA soft drink contains an unknown mass of citric acid, C3H5O(COOH)3. It requires 6.42 mL of 9.580 × 10−2-M NaOH to neutralize the citric acid in 10.0 mL of the soft drink. C3H5O(COOH)3(aq) + 3 NaOH(aq) → Na3C3H5O(COO)3(aq) + 3 H2O(ℓ) Determine which step in these calculations for the mass of citric acid in 1 mL soft drink is incorrect? Why? n (NaOH) = (6.42 mL)(1L/1000 mL)(9.580 × 10−2 mol/L) n (citric acid) = (6.15 × 10−4 mol NaOH) × (3 mol citric acid/1 mol NaOH) m (citric acid in sample) = (1.85 × 10−3 mol citric acid) × (192.12 g/mol citric acid) m (citric acid in 1 mL soft drink) = (0.354 g citric acid)/(10 mL soft drink) Determine the correct result.arrow_forwardMany cereals are made with high moisture content so that the cereal can be formed into various shapes before it is dried. A cereal product containing 58% H2O by mass is produced at the rate of 1000. kg/h. What mass of water must be evaporated per hour if the final product contains only 20.% water?arrow_forward
- Given that the density of argon is 1.78 g/L under standard conditions of temperature and pressure, how many argon atoms are present in a room with dimensions 4.0 m 5.0 m 2.4 m that is filled with pure argon under these conditions of temperature and pressure?arrow_forwardWhen an electric current is passed through an aqueous solution of NaCI, the valuable industrial chemicals H2(g), Cl2(g), and NaOH are produced. 2 NaCI(aq) + 2 H2O(l) H2(g) + Cl2(g) + 2 NaOH(aq) What mass of NaOH can be formed from 15.0 L of 0.35 M NaCI? What mass of chlorine is obtained?arrow_forwardA student wants to prepare 1.00 L of a 1.00-M solution of NaOH (molar mass = 40.00 g/mol). If solid NaOH is available, how would the student prepare this solution? If 2.00 M NaOH is available, how would the student prepare the solution? To help ensure three significant figures in the NaOH molarity, to how many significant figures should the volumes and mass be determined?arrow_forward
- Many cereals are made with high moisture content so that the cereal can be formed into various shapes before it is dried. A cereal product containing 58% H2O by mass is produced at the rate of 1000. kg/h. What mass of water must be evaporated per hour if the final product contains only 20.% water?arrow_forward35. For each of the following solutions, the mass of solute is given, followed by the total volume of the solution prepared. Calculate the molarity of each solution. a. 3.51 g NaCl: 25 mL c. 3.51 g NaCl: 75 mL b. 3.51 g NaCl; 50. mL d. 3.51 g NaCl; l.00 Larrow_forwardConsider the chemical reaction 2 S + 3 O2 → 2 SO3. If the reaction is run by adding S indefinitely to a fixed amount of O2, which of these graphs best represents the formation of SO3? Explain your choice.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning