A spacecraft in the shape of a long cylinder has a length of 100 m, and its mass with occupants is 1 000 kg. It has strayed too close to a black hole having a mass 100 times that of the Sun (Fig. P13.24). The nose of the spacecraft points toward the black hole, and the distance between the nose and the center of the black hole is 10.0 km. (a) Determine the total force on the spacecraft. (b) What is the difference in the gravitational fields acting on the occupants in the nose of the ship and on those in the rear of the ship, farthest from the black hole? This difference in accelerations grows rapidly as the ship approaches the black hole. It puts the body of the ship under extreme tension and eventually tears it apart.
Step by stepSolved in 4 steps with 6 images
- A non-rotating black hole has an ‘edge’ at what’s called it’s Schwartzschildradius. For a black hole of mass M, the Schwartzschild radius isRSch = 2GM/(c^2) where G is the gravitational constant and c is the speed of light. Close to black holes, we really should use Einstein’s theory of gravity (General Relativity) instead of Newton’s, but Newton’s is still a good approximation.Using Newtonian Gravity, find the gravitational force on a mass m at theSchwartzschild radius of a black hole. (Your answer for this should look likeFgrav = an expression in terms of G, M, m, c and numbers.) Is the forcesmaller or larger for a more massive black hole?arrow_forwardAs a star ages, it is believed to undergo a variety of changes. One of the last phases of a star's life is to gravitationally collapse into a black hole. If suppose our Sun would end up a Black hole, what will happen to the orbit of the planets of the solar system? (Assuming that the planets are not affected by the evolving stages of the Sun prior to becoming a black hole and noting that for calculation of gravitational force of attraction, the distance being considered is from center to center of the two bodies). Justify your answer.arrow_forwardThe acceleration of gravity near a black hole is so large that not even light can escape. Which two factors would increase the acceleration of gravity near a black hole? O A black hole with more mass and the same radius A black hole with a larger radius and the same mass A black hole with less mass and the same radius A black hole with a smaller radius and the same mass O O Oarrow_forward
- Plaskett's binary system consists of two stars that revolve in a circular orbit about a center of mass midway between them. This statement implies that the masses of the two stars are equal (see figure below). Assume the orbital speed of each star is V = 240 km/s and the orbital period of each is 12.1 days. Find the mass M of each star. (For comparison, the mass of our Sun is 1.99 x 1030 kg.) solar masses XCM Marrow_forwardThe mass of an electron is 9.11 x 10 ^-31 kg. The mass of a proton is 1.67 x 10 ^-27 kg. They are about 5.3×10^ −11 m apart in a hydrogen atom. What is the gravitational force between these two particles in the hydrogenatom?arrow_forwardThe Oort Cloud extends out to (possibly) one light-year from the sun. Objects in the Oort Cloud are still gravitationally bound to the sun. Suppose one such iceball orbits the sun in a circle. I'm going to alter some numbers, such as the mass of the sun and even G. The gravitational force is directed toward the sun and has the following magnitude: Calculate the force on the object if these are the numbers: G = 6.1*10-11 N*m2/kg2 M = 2.7*1030 kg m = 1.5*108 kg r = 19*1015 m Calculate your answer in microNewtons (10-6 N).arrow_forward
- Black holes are difficult to observewith telescopes because they, bydefinition, don’t emit or reflect any light. They can be found by look-ing for other nearby objects orbit-ing them, however. Here is a dia-gram of a star in a circular orbit around a black hole. a. The period of the star’s orbit is 90 days, and its orbital radius around the black hole isobserved to be 3.6 : ×10^11 m. Find the orbital velocity of the star in units of m/s. (You need to convert 90 days to seconds, first). The circumference of a circle is 2πr. b. The mass of the star is known to be 4 × 10^30 kg. Find the centripetal acceleration of thestar and the strength of the gravitational force on the star. c. Find the mass of the black hole.arrow_forwardThe mass of the Starkiller Base from Star Wars is thought to be about 6.00 x 1024 kg due to the star inside of it. What would be the force of gravity acting on a 89.2 kg person who is standing on the surface of the base and therefore a distance of 3.30 x 105 m from the center? G=6.674⋅10^−11 m^3/kg⋅s^2arrow_forwardPlaskett's binary system consists of two stars that revolve in a circular orbit about a center of mass midway between them. This statement implies that the masses of the two stars are equal (see figure below). Assume the orbital speed of each star is V = 210 km/s and the orbital period of each is 11.5 days. Find the mass M of each star. (For comparison, the mass of our Sun is 1.99 x 1030 kg.) solar masses M XCM Marrow_forward
- Black Hole Gravity III. If a person is falling feet first into a black hole, her feet are at the Schwarzschild radius, and her head is outside the radius by an additional 2 m, what is the approximate ratio of the gravitational acceleration felt at her feet compared to the gravitational acceleration felt at her head? Would she be stretched and squished differently at her head and feet? Assume the gravitational acceleration is g = GM⁄r2.arrow_forwardPlaskett's binary system consists of two stars that revolve in a circular orbit about a center of mass midway between them. This statement implies that the masses of the two stars are equal (see figure below). Assume the orbital speed of each star is |v| 190 km/s and the orbital period of each is 12.9 days. Find the mass M of each star. (For comparison, the mass of our Sun is 1.99 x 1030 kg.) solar masses M XCM Marrow_forwardA black hole is an object so massive that not even light can escape, one way to define the size of a black hole is by the Schwarzschild Radius, which is the radius at which the escape velocity is equal to the speed of light. If we were to condense the Earth into a black hole, what would be the size of its Schwarzschild Radius?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON