Concept explainers
12-27 Explain why each name is incorrect and then write a correct name.
- 2-Ethyl-l-propene
- 5-lsopropylcyclohexene
- 4-Methyl-4-hexene
- 2-sec-Butyl-l-butene
- 6,6-Dimethylcyclohexene
- 2-Ethyl-2-hexene
(a)
Interpretation:
To identify the error in name of the given compound and write the correct IUPAC names.
Concept Introduction:
The rules to write the IUPAC names are as follows-
- The longest carbon chain is identified, and the root name is given accordingly.
- All the substituents attached to the root chain are determined.
- The position of the substituents is so assigned that the sum of their positions comes to be the least of all possible positions.
- The prefix di, tri, tetra is used if the same substituent is present two, three and four times respectively.
- All the substituents in the name are written in alphabetical order.
- For a cyclic hydrocarbon the prefix cyclo- is used.
Answer to Problem 12.27P
2-Methyl-but-1-ene.
Explanation of Solution
2-Ethyl-1-propene.
Error- longest chain not correctly located.
Correct name-
2-Methyl-but-1-ene.
(b)
Interpretation:
To identify the error in name of the given compound and write the correct IUPAC names.
Concept Introduction:
The rules to write the IUPAC names are as follows-
- The longest carbon chain is identified, and the root name is given accordingly.
- All the substituents attached to the root chain are determined.
- The position of the substituents is so assigned that the sum of their positions comes to be the least of all possible positions.
- The prefix di, tri, tetra is used if the same substituent is present two, three and four times respectively.
- All the substituents in the name are written in alphabetical order.
- For a cyclic hydrocarbon the prefix cyclo- is used.
Answer to Problem 12.27P
4-Isopropylcyclohexene.
Explanation of Solution
5-Isopropylcyclohexene.
Error- position of the substituent not correctly mentioned.
Correct name-
4-Isopropylcyclohexene.
(c)
Interpretation:
To identify the error in name of the given compound and write the correct IUPAC names.
Concept Introduction:
The rules to write the IUPAC names are as follows-
- The longest carbon chain is identified, and the root name is given accordingly.
- All the substituents attached to the root chain are determined.
- The position of the substituents is so assigned that the sum of their positions comes to be the least of all possible positions.
- The prefix di, tri, tetra is used if the same substituent is present two, three and four times respectively.
- All the substituents in the name are written in alphabetical order.
- For a cyclic hydrocarbon the prefix cyclo- is used.
Answer to Problem 12.27P
3-Methyl-2-hexene.
Explanation of Solution
4-Methyl-4-hexene.
Error- position of the double bond not correctly mentioned.
Correct name-
3-Methyl-2-hexene.
(d)
Interpretation:
To identify the error in name of the given compound and write the correct IUPAC names.
Concept Introduction:
The rules to write the IUPAC names are as follows-
- The longest carbon chain is identified, and the root name is given accordingly.
- All the substituents attached to the root chain are determined.
- The position of the substituents is so assigned that the sum of their positions comes to be the least of all possible positions.
- The prefix di, tri, tetra is used if the same substituent is present two, three and four times respectively.
- All the substituents in the name are written in alphabetical order.
- For a cyclic hydrocarbon the prefix cyclo- is used.
Answer to Problem 12.27P
2-Ethyl-3-methyl -1-pentene.
Explanation of Solution
2-sec-butyl-1-butene.
Error- longest chain not correctly determined.
Correct name-
2-Ethyl-3-methyl -1-pentene.
(e)
Interpretation:
To identify the error in name of the given compound and write the correct IUPAC names.
Concept Introduction:
The rules to write the IUPAC names are as follows-
- The longest carbon chain is identified, and the root name is given accordingly.
- All the substituents attached to the root chain are determined.
- The position of the substituents is so assigned that the sum of their positions comes to be the least of all possible positions.
- The prefix di, tri, tetra is used if the same substituent is present two, three and four times respectively.
- All the substituents in the name are written in alphabetical order.
- For a cyclic hydrocarbon the prefix cyclo- is used.
Answer to Problem 12.27P
3,3-Dimethylcyclohexene.
Explanation of Solution
6,6-Dimethylcyclohexene.
Error- position of substituents not correctly determined.
Correct name-
3,3-Dimethylcyclohexene.
(f)
Interpretation:
To identify the error in name of the given compound and write the correct IUPAC names.
Concept Introduction:
The rules to write the IUPAC names are as follows-
- The longest carbon chain is identified, and the root name is given accordingly.
- All the substituents attached to the root chain are determined.
- The position of the substituents is so assigned that the sum of their positions comes to be the least of all possible positions.
- The prefix di, tri, tetra is used if the same substituent is present two, three and four times respectively.
- All the substituents in the name are written in alphabetical order.
- For a cyclic hydrocarbon the prefix cyclo- is used.
Answer to Problem 12.27P
3-Methyl-3-Heptene.
Explanation of Solution
2-Ethyl-2-hexene.
Error- longest chain not correctly determined.
Correct name-
3-Methyl-3-Heptene.
Want to see more full solutions like this?
Chapter 12 Solutions
Bundle: Introduction to General, Organic and Biochemistry, 11th + OWLv2, 4 terms (24 months) Printed Access Card
- Nonearrow_forwardWe know that trivalent cations (Cr3+, Mn3+, V3+) with a large difference between octahedral and tetrahedral EECC, form exclusively normal spinels. Bivalent cations (Ni2+ and Cu2+) with high EECC, form inverse spinels. Is this statement correct?arrow_forward(b) Draw the product A that would be formed through the indicated sequence of steps from the given starting material. MeO (1) Br₂, hv (2) NaOEt, EtOH, A (3) BH3:THF (4) H₂O2, HO- B H₂C. CH₂ OH Editarrow_forward
- Small changes in secondary; tertiary primary; secondary primary; tertiary tertiary; secondary protein structure may lead to big changes in protein structures.arrow_forward? The best reagent to achieve the transformation shown is: A Na/NH3 B KCN C HCN CN D H2BCN ய E Transformation is not possible in one steparrow_forwardShow work. don't give Ai generated solution. Don't copy the answer anywherearrow_forward
- συ 3. Determine the rate law equation for a chemical re Mild The following is a chemical reaction: Fron law, 2A+2B C+D+E Run The reaction is found to be first order with respect to A and second order with respect to B. Write the rate law equation for the reaction. (include K, but you can't find the value). 1 How would doubling the concentration of reactant A affect the reaction rate? How would doubling the concentration of reactant B affect the reaction rate? 2 3 K Using yoarrow_forwardHeteropolyacids behave as strong Bronsted acids, compatible with benign oxidants.arrow_forwardygfarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning