College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 26P
A 900 N crate slides 12m down a ramp that makes an angle of 35° with the horizontal. If the crate slides at a constant speed, how much thermal energy is created?
Expert Solution & Answer
Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video
schedule03:33
Chapter 10 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 10 - The brake shoes of your car are made of a material...Ch. 10 - When you pound a nail with a hammer, the nail gets...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 10, give a specific...Ch. 10 - For Questions 3 through 10, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...
Ch. 10 - A ball of putty is dropped from a height of 2 m...Ch. 10 - A 0.5 kg mass on a 1-m-long string swings in a...Ch. 10 - Particle A has less mass than particle B. Both are...Ch. 10 - Puck B has twice the mass of puck A. Starting from...Ch. 10 - To change a tire, you need to use a jack to raise...Ch. 10 - Prob. 16CQCh. 10 - A roller coaster car rolls down a frictionless...Ch. 10 - A spring gun shoots out a plastic ball at speed v....Ch. 10 - Sandy and Chris stand on the edge of a cliff and...Ch. 10 - A solid cylinder and a hollow cylinder have the...Ch. 10 - You are much more likely to be injured if you fall...Ch. 10 - A roller coaster starts from rest at its highest...Ch. 10 - You and a friend each carry a 15 kg suitcase up...Ch. 10 - A woman uses a pulley and a rope to raise a 20 kg...Ch. 10 - A hockey puck sliding along frictionless ice with...Ch. 10 - A block slides down a smooth ramp, starting from...Ch. 10 - A wrecking ball is suspended from a 5.0-m-long...Ch. 10 - Prob. 1PCh. 10 - The two ropes seen in Figure P10.2 are used to...Ch. 10 - The two ropes shown in the bird's-eye view of...Ch. 10 - Prob. 4PCh. 10 - A boy flies a kite with the string at a 30 angle...Ch. 10 - A crate slides down a ramp that makes a 20 angle...Ch. 10 - Which has the larger kinetic energy, a 10 g bullet...Ch. 10 - At what speed does a 1000 kg compact car have the...Ch. 10 - Prob. 9PCh. 10 - The cheetah is the fastest land animal, reaching...Ch. 10 - How fast would an 80 kg man need to run in order...Ch. 10 - Sams job at the amusement park is to slow down and...Ch. 10 - A 20 g plastic ball is moving to the left at 30...Ch. 10 - Prob. 14PCh. 10 - An energy storage system based on a flywheel (a...Ch. 10 - The lowest point in death Valley is 85.0 m below...Ch. 10 - Prob. 17PCh. 10 - The world's fastest humans can reach speeds of...Ch. 10 - A 72 kg bike racer climbs a 1200-m-long section of...Ch. 10 - A 1000 kg wrecking ball hangs from a 15-m-long...Ch. 10 - How far must you stretch a spring with k = 1000...Ch. 10 - How much energy can be stored in a spring with a...Ch. 10 - The elastic energy stored in your tendons can...Ch. 10 - Marissa drags a 23 kg duffel bag 14 m across the...Ch. 10 - Mark pushes his broken car 150 m down the block to...Ch. 10 - A 900 N crate slides 12m down a ramp that makes an...Ch. 10 - A 25 kg child slides down a playground slide at a...Ch. 10 - A boy reaches out of a window and tosses a ball...Ch. 10 - Prob. 29PCh. 10 - What minimum speed does a 100 g puck need to make...Ch. 10 - A car is parked at the top of a 50-m-high hill....Ch. 10 - A 1500 kg car is approaching the hill shown in...Ch. 10 - A 10 kg runaway grocery cart runs into a spring,...Ch. 10 - As a 15,000 kg jet lands on an aircraft carrier,...Ch. 10 - Your friend's Frisbee has become stuck 16m above...Ch. 10 - A fireman of mass 80 kg slides down a pole. When...Ch. 10 - Prob. 37PCh. 10 - Prob. 38PCh. 10 - In the winter activity of tubing, riders slide...Ch. 10 - A cyclist is coasting at 12 m/s when she starts...Ch. 10 - A 50 g marble moving at 2.0 m/s strikes a 20 g...Ch. 10 - Ball 1, with a mass of 100 g and traveling at 10...Ch. 10 - Prob. 43PCh. 10 - Two balls undergo a perfectly elastic head-on...Ch. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - A 1000 kg sports car accelerates from 0 to 30m/sin...Ch. 10 - In just 0.30 s, you compress a spring (spring...Ch. 10 - An elite Tour de France cyclist can maintain an...Ch. 10 - A 710 kg car drives at a constant speed of 23 m/s....Ch. 10 - An elevator weighing 2500 N ascends at a constant...Ch. 10 - How much work does Scott do to push a 80 kg sofa...Ch. 10 - A 550 kg elevator accelerates upward at 1.2 m/s2...Ch. 10 - Prob. 54GPCh. 10 - Prob. 55GPCh. 10 - Prob. 56GPCh. 10 - You are driving your 1500 kg car at 20 m/s down a...Ch. 10 - A 20 kg child is on a swing that hangs from...Ch. 10 - Prob. 59GPCh. 10 - A cannon tilted up at a 30 angle fires a cannon...Ch. 10 - The sledder shown in Figure P10.61 starts from the...Ch. 10 - A 50 g ice cube can slide without friction up and...Ch. 10 - The maximum energy a bone can absorb without...Ch. 10 - In an amusement park water slide, people slide...Ch. 10 - Boxes A and B in Figure P10.69 have masses of 12.0...Ch. 10 - What would be the speed of the boxes in Problem 69...Ch. 10 - A 20 g ball is fired horizontally with initial...Ch. 10 - Two coupled boxcars are rolling along at 2.5 m/s...Ch. 10 - A fish scale, consisting of a spring with spring...Ch. 10 - A 70 kg human sprinter can accelerate from rest to...Ch. 10 - A 50 g ball of clay traveling at 6.5 m/s hits and...Ch. 10 - Prob. 78GPCh. 10 - The mass of an elevator and its occupants is 1200...Ch. 10 - Prob. 80GPCh. 10 - Tennis Ball Testing A tennis ball bouncing on a...Ch. 10 - Tennis Ball Testing A tennis ball bouncing on a...Ch. 10 - Tennis Ball Testing A tennis ball bouncing on a...Ch. 10 - Prob. 84MSPPCh. 10 - Tennis Ball Testing A tennis ball bouncing on a...Ch. 10 - Work and Power in Cycling When you ride a bicycle...Ch. 10 - Work and Power in Cycling When you ride a bicycle...Ch. 10 - Work and Power in Cycling When you ride a bicycle...Ch. 10 - Work and Power in Cycling When you ride a bicycle...Ch. 10 - Work and Power in Cycling When you ride a bicycle...
Additional Science Textbook Solutions
Find more solutions based on key concepts
HOW DO WE KNOW? In this chapter, we have focused on genetic systems present in bacteria and on the viruses that...
Concepts of Genetics (12th Edition)
89. Determine the volume of 0.150 M NaOH solution required to neutralize each sample of hydrochloric acid. The ...
Introductory Chemistry (6th Edition)
19. Feather color in parakeets is produced by the blending of pigments produced from two biosynthetic pathways ...
Genetic Analysis: An Integrated Approach (3rd Edition)
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If you run down some stairs and stop, what happens to your kinetic energy and your initial gravitational potential energy?arrow_forwardA crate of mass 10.0 kg is pulled up a rough incline with an initial speed of 1.50 m/s. The pulling force is 100 N parallel to the incline, which makes an angle of 20.0 with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.00 m. (a) How much work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crateincline system owing to friction. (c) How much work is done by the 100-N force on the crate? (d) What is the change in kinetic energy of the crate? (e) What is the speed of the crate after being pulled 5.00 m?arrow_forwardWhen jogging at 13 km/h on a level surface, a 70-kg man uses energy at a rate of approximately 850 W. Using the facts that the “human engine” is approximately 25 efficient, determine the rate at which this man uses energy when jogging up a 5.0 slope at this same speed. Assume that the frictional retarding force is the same in both cases.arrow_forward
- A block of mass m = 200 g is released from rest at point along the horizontal diameter on the inside of hemispherical bowl of radius R = 30.0 cm, and the surface of the bowl is rough (Fig. P8.23). The blocks speed at point is 1.50 m/s. Figure P8.23 (a) What is its kinetic energy at point ? (b) How much mechanical energy is transformed into internal energy as the block moves from point to point ? (c) Is it possible to determine the coefficient of friction from these results in any simple manner? (d) Explain your answer to part (c).arrow_forward(a) Calculate the energy in kJ used by a 55.0-kg woman who does 50 deep knee bends in which her center of mass is lowered and raised 0.400 m. (She does work in both directions.) You may assume her efficiency is 20%. (b) What is the average power consumption rate in watts if she does this in 3.00 min?arrow_forward(a) What is the efficiency of an out-of-condition professor who does 2.10105J of useful work while metabolizing 500 kcal of food energy? (b) How many food calories would a well-conditioned athlete metabolize in doing the same work with an efficiency of 20%?arrow_forward
- A student has the idea that the total work done on an object is equal to its final kinetic energy. Is this idea true always, sometimes, or never? Ii it is sometimes true, under what circumstances? If it is always or never true, explain why.arrow_forwardA ball of clay falls freely to the hard floor. It does not bounce noticeably, and it very quickly comes to rest. What, then, has happened to the energy the ball had while it was falling? (a) It has been used up in producing the downward motion. (b) It has been transformed back into potential energy. (c) It has been transferred into the ball by heat. (d) It is in the ball and floor (and walls) as energy of invisible molecular motion. (e) Most of it went into sound.arrow_forward(a) How fast must a 3000-kg elephant move to have the same kinetic energy as a 65.0-kg sprinter running at 10.0 m/s? (b) Discuss how the larger energies needed for the movement of larger animals would relate to metabolic rates.arrow_forward
- If the energy in fusion bombs were used to supply the energy needs of the world, how many of the 9-megaton variety would be needed for a year’s supply of energy (using data from Equation 8.7)? U(x)=12kx2=const.arrow_forwardIn Chapter 7, the work-kinetic energy theorem, W = K, was introduced. This equation states that work done on a system appears as a change in kinetic energy. It is a special-case equation, valid if there are no changes in any other type of energy such as potential or internal. Give two or three examples in which work is done on a system but the change in energy of the system is not a change in kinetic energy.arrow_forwardIn a Coyote/Road Runner cartoon clip (https://openstaxcollege.org/l/21coyroadcarcl), a spring expands quickly and sends the coyote into a rock. If the spring extended 5 m and sent the coyote of mass 20 kg to a speed of 15 m/s, (a) what is the spring constant of this spring? (b) If the coyote were sent vertically into the air with the energy given to him by the spring, how high could he go if there were no non-conservative forces?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY