College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
* You embark on a round-trip journey to a star 11 light-years away, as measured in Earth's reference frame. You travel at a constant speed outbound, turn around rapidly, and travel back at constant speed.
If the round trip takes 15 years by your clock, (a) how fast do you travel and (b) what s the round-trip time as measured on Earth!
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1. You are an observer in a 100-m long spacecraft traveling from the earth to the moon at 0.8c. (a)What is the proper length of the spacecraft? (b) For a proper time interval of 1 sec., the relativistic time interval for the spacecraft measured from the earth reference frame would be: (c)Time dilation does not apply to all time-dependent physical and biological processes. T/F? (c) What is the relativistic length, DL measured from the reference frame of earth? (d) An APOLLO crew left a flat mirror reflector on the surface of the moon (for all you deniers out there, in the 50th anniversary year of APOLLO 11!). If the average surface-to-surface distance from the earth to the moon is 3.83 x 10^8 m, then how long does it take moonlight to reach earth?arrow_forwardA star is 16.6 light-years from Earth. Part A How long would it take a spacecraft traveling 0.950c to reach that star as measured by observer on Earth? tEarth 17.5 years Submit ✓ Part B Correct How long would it take a spacecraft traveling 0.950c to reach that star as measured by observer on the spacecraft? t = 5.46 years Submit ✓ Previous Answers Part C Correct Submit What is the distance traveled according to observers on the spacecraft? 15.18 light-years Previous Answers Part D Correct Previous Answers v= 5.18 What will the spacecraft occupants compute their speed to be from the results of part B and part C? IT| ΑΣΦ Submit Previous Answers Request Answer ? X Incorrect; Try Again; 3 attempts remaining .Carrow_forwardThe space and time coordinates for two events as measured in a frame S are as follows: Event 1: x1=x0 , t1=x0/c Event 2: x2=2x0, t2=x0/2c a. There exists a frame in which these events occur at the same time. Find the velocity of this frame with respect to S. b. What is the value of t at which both events occur in the new frame?arrow_forward
- Doppler Effect: This problem looks at wavelength shifts instead of frequency shifts. In this problem, AX is defined as the difference between the wavelength in the observer's frame and the source frame, and you can pick 2 to be equal to the wavelength in the source frame. a. Show that, for speeds u<arrow_forwardChapter 37, Problem 015 The center of our Milky Way galaxy is about 24000 ly away. (a) To eight significant figures, at what constant speed parameter would you need to travel exactly 24000 ly (measured in the Galaxy frame) in exactly 27 y (measured in your frame)? (b) Measured in your frame and in lightyears, what length of the Galaxy would pass by you during the trip? (a) Number Units (b) Number Unitsarrow_forwardIn 2010, a 20-year-old astronaut leaves her twin on earth and goes on a rocket to explore the galaxy. The rocket moves at 2.9 x 108 m/s during the voyage. It returns to earth in the year 2040. a. Using relativity, calculate the age of the returning astronaut. b. Find the length of the rocket in the earth’s frame of reference when it is moving, given that the rest length is 120 m. Assume you are a stationary observer viewing the rocket from the side.arrow_forwardThe nearest star to Earth is Proxima Centauri, 4.2 light-years away. Part A At what constant velocity must a spacecraft travel from Earth if it is to reach the star in 3.6 years, as measured by travelers on the spacecraft? Express your answer using two significant figures. IVE ΑΣΦ v= 0.805 Submit Part B X Incorrect; Try Again; 2 attempts remaining Previous Answers Request Answer How long does the trip take according to Earth observers? Express your answer using two significant figures. D ΠΫΠΙ ΑΣΦ t = 5.2 Submit ? Previous Answers Request Answer ? X Incorrect; Try Again; 4 attempts remaining C yearsarrow_forwardTony & Yuki are working at a particle linear accelerator that is 414 meters long. A particle is moving at 0.89 c in the accelerator. What is the length of the particle accelerator in meters according to the particle? Give your answer with no decimal places please.arrow_forwardTwo atomic clocks are synchronized. One is placed on a satellite which orbits around the earth at high speeds for a whole year. The other is placed in a lab and remains at rest with respect to the earth. You may assume both clocks can measure time accurately to many significant digits. a)Will the two clocks still be synchronized after one year? b) imagine the speed of light is much lower than its actual value. How would the results of this experiment change if the speed of light was only twice the average speed of the satellite? Explain your reasoning using a calculation.arrow_forwardarrow_back_iosarrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON