You are working in a condensed-matter laboratory for your senior project. Several of the ongoing projects use liquid helium, which is contained in a thermally insulated vessel that can hold up to a maximum of Vmax = 240 L of the liquid at Tc = 4.20 K. Because some of the liquid helium has already been used, someone asks you to check to see if there is enough for the next day, on which four different experimental groups will need liquid helium. You are not sure how to measure the amount of liquid remaining, so you insert an aluminum rod of length L = 2.00 m and with a cross-sectional area A = 2.50 cm2 into the vessel. By seeing how much of the lower end of the rod is frosted when you pull it out, you can estimate the depth of the liquid helium. After inserting the rod, however, one of the experimenters calls you over to perform a task and you forget about the rod, leaving it in the liquid helium until the next morning. How much liquid helium is available for the next day’s experiments? (Aluminum has thermal conductivity of 3 100 W/m ? K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.) Assume that gaseous heliumcan escape from the top of the vessel.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

You are working in a condensed-matter laboratory for your senior project. Several of the ongoing projects use liquid helium, which is contained in a thermally insulated vessel that can hold up to a maximum of Vmax = 240 L of the liquid at Tc = 4.20 K. Because some of the liquid helium has already been used, someone asks you to check to see if there is enough for the next day, on which four different experimental groups will need liquid helium. You are not sure how to measure the amount of liquid remaining, so you insert an aluminum rod of length L = 2.00 m and with a cross-sectional area A = 2.50 cm2 into the vessel. By seeing how much of the lower end of the rod is frosted when you pull it out, you can estimate the depth of the liquid helium. After inserting the rod, however, one of the experimenters calls you over to perform a task and you forget about the rod, leaving it in the liquid helium until the next morning. How much liquid helium is available for the next day’s experiments? (Aluminum has thermal conductivity of 3 100 W/m ? K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.) Assume that gaseous helium
can escape from the top of the vessel.

Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Second law of thermodynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON