Question
thumb_up100%
You are given a number of 16 Ω resistors, each capable of dissipating only 2.0 W without being destroyed. What is the minimum number of such resistors that you need to combine in series or in parallel to make a 16 Ω resistance that is capable of dissipating at least 10.7 W?
4 and 3 are wrong.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- The figure displays two circuits with a charged capacitor that is to be discharged through a resistor when a switch is closed. In figure (a) below, R₁ = 21.7 Q and C₁ = 5.08 µF. In figure (b) below, R₂ = 10.5 Q and C₂ = 8.00 μF. The ratio of the initial charges on the two capacitors is 902/901 = 1.82. At time t = 0, both switches are closed. At what time t do the two capacitors have the same charge? Number i 0.188 Units 00 ms (a) (b)arrow_forwardYou have a battery with a voltage of Vtotal = 25 V and two resistors, both with a resistance of R, = R, %3D 40 0. a. How can you connect the resistors to the battery (in series or parallel) in order to achieve the largest power dissipation? How much power is dissipated in this case?arrow_forwardTwo resistors have resistances R1 and R2, where R1 = 2.8R2. When configured in series and connected to a source potential of 23.6 V, they draw 0.723 W of power. If their configuration is changed to be in parallel and the source potential remains the same, what power does the circuit drawarrow_forward