Database System Concepts
7th Edition
ISBN: 9780078022159
Author: Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- In Data and machin learning answer this:arrow_forwardConsider the following perceptron with the activation function f(I)=arctan(I-0.6). Use delta learning rule toupdate the weights w1 and w2 for the training data x=[1, 1] and D=1. (Choose k=0.2) it wont let me post the screenshot of the model but the w1 is 0.2 and w2 is 0.4arrow_forwardSuppose we are trying to model a classification problem with two labels: 'sick' and 'healthy.' For the purpose of this test, we consider a positive result to be testing sick and a negative to test as healthy. After fitting the model with LDA in R, we compare predicted values from the actual values, as shown below: > lda. fit = 1da (test.result x1 + x2, data-mydata) > lda. pred > lda.class=lda.pred$class > table (lda.class, mydata$test.result) = predict (1da.fit) mydata lda.pred sick healthy sick 40 healthy 25 32 121arrow_forward
- Question 48. Let us return to the Titanic data set. We now have learned several models and want to choose the best one. We used three different methods to validate these models: The training error rate (apparent error rate), the error rate on an external test set and the error rate estimated by a 10-fold cross validation. Training Error | Error on the test set | Cross Validation Error 0.18 Learner Decision Tree 0.22 0.21 Random Forest 0.01 0.10 0.12 1-Nearest-Neighbour 0.18 0.19 Which of the following statements are correct? a) 1-Nearest-Neighbour has a perfect training error and hence it should be used here. b) Random Forests outperforms both 1-Nearest-Neighbour and the Decision Tree in terms of prediction error. c) Not just in this case, but in general, Cross Validation is the better validation strategy and should always be preferred over the error on a single test set. d) Not just in this case, but in general, Decision Trees always perform worse than Random Forests.arrow_forwardAssume the following simple regression model, Y = β0 + β1X + ϵ ϵ ∼ N(0, σ^2 ) Now run the following R-code to generate values of σ^2 = sig2, β1 = beta1 and β0 = beta0. Simulate the parameters using the following codes: Code: # Simulation ## set.seed("12345") beta0 <- rnorm(1, mean = 0, sd = 1) ## The true beta0 beta1 <- runif(n = 1, min = 1, max = 3) ## The true beta1 sig2 <- rchisq(n = 1, df = 25) ## The true value of the error variance sigmaˆ2 ## Multiple simulation will require loops ## nsample <- 10 ## Sample size n.sim <- 100 ## The number of simulations sigX <- 0.2 ## The variances of X # # Simulate the predictor variable ## X <- rnorm(nsample, mean = 0, sd = sqrt(sigX)) Q1 Fix the sample size nsample = 10 . Here, the values of X are fixed. You just need to generate ϵ and Y . Execute 100 simulations (i.e., n.sim = 100). For each simulation, estimate the regression coefficients (β0, β1) and the error variance (σ 2 ). Calculate the mean of…arrow_forwardYou are developing a simulation model of a service system and are trying to create aninput model of the customer arrival Process, You have the following four observations of the process of interest [86, 24,9, 50] and you are considering either an exponential distributionOf a uniform distribution for the model. Using the data to estimate any necessary distributionParameters, write the steps to plot Q-Q plots for both cases.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education