
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:Task 1
You are employed as a mechanical engineer within an unnamed research center, specializing in the
development of innovative air conditioning systems. Your division is tasked with providing computer-based
modeling and design solutions using computational fluid dynamics through ANSYS software. Your primary
responsibilities involve the analysis of horizontal channel dynamics to meet specific criteria. Under the
guidance of your immediate supervisor, you have been assigned unique responsibilities within an ongoing
project. As a member of the research team, your role includes constructing an appropriate model and
executing a sequence of simulation iterations to explore and enhance channel performance. Figure 1
provides a visualization of the horizontal channel under consideration. Consider 2D, incompressible, steady
flow in a horizontal channel at a Reynolds number of 150. The schematic below illustrates the channel flow,
not drawn to scale. For simplicity, neglect gravity. The channel's length and width are 15 m and 1.5 m,
respectively, as shown in the figure. Assume the thickness is equal to 1.5 m in the z-direction. The velocity
piw
is constant at the inlet in the x-direction and equal to 1.5 m/s. The Reynolds number is defined as Re =
where v is the average velocity. Take p 1.2 kg/m³ and adjust u to get the desired Reynolds number.
The absolute pressure at the outlet is 1 atm.
=
Y₁
Inlet Velocity
1.5 m/s
15 m
1.5 m
Set up a CFD simulation for the horizontal channel by Ansys Fluent.
Define the geometry, boundary conditions, and fluid properties.
X
Figure 1 visualization of the horizontal channel.
You need to solve the 2D form of the governing equations using ANSYS Fluent to obtain the velocity and pressure
distribution in the xy plane. Since we are assuming the flow is 2D, the mathematical model to be solved is 2D and
there is no variation of velocity and pressure in the z-direction.
1.
2.
3. Run the simulation and analyze the pressure and velocity distributions within the channel.
4. Discuss the importance of CFD in assessing fluid flow characteristics.
TI
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 6 steps with 17 images

Knowledge Booster
Similar questions
- ECO 5. AUTOMOTIVE. The power an engine produces is called horsepower. In mathematical terms, one horsepower is the power needed to move 550 pounds one foot in one second, or the power needed to move 33,000 pounds one foot in one minute. Power, in physics, is defined simply as the rate of doing work. The formula below gives the horsepower at 5,252 radians per second. https://philkotse.com/toyota-corona-ior-sale-in-baguio/1991-for-sale-in-aid7017151 625T 1313 where H is the horsepower and T is the torque a. Find the inverse of the model. b. If a taxi produces a horsepower of 200, what is the torque it generates? Solve here:arrow_forwardQUESTION 7 A model tow-tank test is conducted on a bare hull model at the model design speed in calm water. Determine the effective horsepower (hp) for the ship, including appendage and air resistances. The following parameters apply to the ship and model: Ship 1,100 Model Length (ft) Hull Wetted Surface Area (ft2) Speed (knots) 30 250,000 15 Freshwater Water Seawater 50°F 70°F Projected Transverse Area (ft²) Cair 7,500 0.875 Appendage Resistance (% of bare hull) 10% Hull Resistance (Ibf) 20arrow_forwardSolve correctlyarrow_forward
- During a bicep curl on a bicep curl machine, I'm curling a weight stack of 100 pounds (single arm...I'm jacked like that). At this very moment, the weight stack has a moment arm of 0.12m, my elbow has an angle of 63deg, my muscle force vector has an angle of 23deg, and it attaches 3cm below my elbow joint on my radius. How much force must my bicep create right at this moment to hold the weight stack in place?arrow_forwardHello Good Evening Sir,I have a question in my homework related structural mechanics lesson. The following below is my question. Please advice. Thank you so much Regards, Yusufarrow_forwardTask 1 You are employed as a mechanical engineer within an unnamed research center, specializing in the development. of innovative air conditioning systems. Your division is tasked with providing computer-based modeling and design solutions using computational fluid dynamics through ANSYS software. Your primary responsibilities. involve the analysis of horizontal channel dynamics to meet specific criteria. Under the guidance of your immediate supervisor, you have been assigned unique responsibilities within an ongoing project. As a member of the research team, your role includes constructing an appropriate model and executing a sequence of simulation. iterations to explore and enhance channel performance. Figure 1 provides a visualization of the horizontal channel under consideration. Consider 2D, incompressible, steady flowin a horizontal channel at a Reynolds number of 150. The schematic below illustrates the channel flow, not drawn to scale. For simplicity, neglect gravity. The…arrow_forward
- Q5arrow_forwardA realistic CAD model of the whole jack must be produced from which you will generate an assembly drawing. Standard bought-in components must be specified. Material specifications of components listed in your 'bill of materials' must be provided. Detail designs calculations, for the main pivots, hydraulic actuation safety system, must be carried out.arrow_forwardDrop-load (I)This exercise is part of a series of problems aimed at modelling a situation by progressively refining our model to consider more and more parameters. This progressive approach is very close to what professional scientists do! Context We want to lower a suspended load in a controlled way so that it hits the ground with a speed whose modulus is not too great. To do this, the suspended load (B) is connected by a rope passing through a pulley to another mass (A), which can move on a horizontal surface. Information The masses of the charges A and B are known.The pulley is a ring of mass mp and radius R that can rotate without friction.The surface on which mass A is placed is horizontal.There is no friction between mass A and the surface on which it is placed.The string attached to mass A is perfectly parallel to the surface on which the mass rests. SchematizationDraw a diagram of each object that interests us. Draw x- and y-axes for each object. Draw and name each force…arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY