College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
You are driving a car on a straight road at a speed of +25.0 m/s when you spot a desert tortoise walking across the road in front of you. You brake the car to a stop. The car slows down with a constant acceleration of −2.0 m/s2. How far does the car travel as it slows to a stop?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are driving your car along a country road at a speed of 23.6 m/s. As you come over the crest of a hill, you notice a farm tractor 25.0 m ahead of you on the road, moving in the same direction as you at a speed of 10.0 m/s. You immediately slam on your brakes and slow down with a constant acceleration of magnitude 7.20 m/s2. How far is the tractor in front of you when you finally stop?arrow_forwardTwo rockets are launched at a fireworks display. Rocket A is launched with an initial velocity v0 = 100 m/s and rocket B is launched t1 seconds later with the same initial velocity. The two rockets are timed to explode simultaneously at a height of 500 m as A is falling and B is rising. Assume a constant acceleration g = 9.81 m/s2 Determine the time t1. The time t1 is ____s.arrow_forwardA blue car travels down a straight road at a constant speed of 21.7 m/s. As they pass a red car, initially stopped on the side of the road, the red car speeds up at a rate of 2.12 m/s2. How much distance (in m) does the blue car travel before the red car overtakes the blue car?arrow_forward
- A car starts from rest with an acceleration of 5.3 m/s² which decreases linearly with time to zero in 10.3 seconds, after which the car continues at a constant speed. Determine the time t required for the car to travel 330 m from the start. Answer: t = i ! Sarrow_forwardA Thomson's gazelle can run at very high speeds, but its acceleration is relatively modest. A reasonable model for the sprint of a gazelle assumes an acceleration of 4.2 m/s2m/s2 for 6.5 ss , after which the gazelle continues at a steady speed. What is the gazelle's top speed? Express your answer with the appropriate units. A human would win a very short race with a gazelle. The best time for a 30 mm sprint for a human runner is 3.6 ss. How much time would the gazelle take for a 30 mm race? Express your answer with the appropriate units. A gazelle would win a longer race. The best time for a 200 mm sprint for a human runner is 19.3 ss. How much time would the gazelle take for a 200 mm race? Express your answer with the appropriate units.arrow_forwardA rocket-powered sled moves along a track, eventually reaching a top speed of 150 m/s to the west. It then begins to slow down, reaching a complete stop after slowing down for 4.21 s. What was the sled s average acceleration and velocity during the slowdown phase? 35.6 m/s^2 east, not enough information 0 m/s^2 0, 75 m/s west 35.6 m/s^2 west, not enough informationarrow_forward
- Sarah is standing when she sees a boy running towards her with constant velocity 6.0 m/s. When they are 200 m apart, Sarah starts running to meet him. She runs with a constant acceleration, and by the time they meet, Sarah is running at 7.0 m/s. How long, from the time Sarah begins moving, does it take for them to meet?arrow_forwardA snowboarder on a slope starts from rest and reaches a speed of 2.4 m/s after 7.1 s. (a) What is the magnitude (in m/s2) of the snowboarder's average acceleration? in m/s2 (b) How far (in m) does the snowboarder travel in this time? in marrow_forwardIn heavy rush-hour traffic, you drive in a straight line at 12 m/s for 1.5 minutes, then you have to stop for 3.5 minutes, and finally, you drive at 15 m/s for another 2.5 minutes. Plot a position-versus-time graph for this motion. Your plot should extend from t = 0 minutes to t = 7.5 minutes. Assume x=0 and t=0 at the start of your motion.arrow_forward
- A cheetah is hunting. Its prey runs for 3.50 s at a constant velocity of +7.50m/s. Starting from rest, what constant acceleration must the cheetah maintain in order to run the same distance as its prey runs in the same time?arrow_forwardThe position of an object is given as a function of time as x(t) = (-3.00 m/s)t + (1.00 m/s2)t2. What is the average speed of the object between t = 0.00 s and t = 2.50 s?arrow_forwardAn express train passes through a station. It enters with an initial velocity of 22.0 m/s and decelerates at a rate of 0.150 m/s² as it goes through. The station in 210.0 m long. How fast is it going when the nose leaves the station?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON