
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
You are building a display for a children's science museum in which a uniform, solid sphere of radius 0.114 m starts at rest at the top of a "hill" and rolls, without slipping, down a track and around a loop-the-loop of radius R = 1.27 m. You have already determined that the ball has to be moving at a speed no less than 3.37 m/s at the top of the loop in order to make it around the loop without falling. Note: You should consider whether the ball will be above or below the track at the top of the loop.
What is the minimum height of the "hill" in order to ensure that this happens?

Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problem 2: A tal, cylindrical chimney is toppling over as its base has ruptured. Let us say that the height H of the chimney is significantly larger than its thickness, so we may treat the chimney as a thin, rigid rod of length H. At the instant when the chimney is at angle 0o with respect to the vertical, what is the: (a) angular speed w of the top of the chimney? (b) radial component a, of the acceleration of the top? (c) tangential component aț of the acceleration of the top? (d) the specific value of 60 at which aț is equal to g?arrow_forwardA small 0.360-kg object moves on a frictionless horizontal table in a circular path of radius 3.00 m. The angular speed is 4.97 rad/s. The object is attached to a string of negligible mass that passes through a small hole in the table at the center of the circle. Someone under the table begins to pull the string downward to make the circle smaller. If the string will tolerate a tension of no more than 160 N, what is the radius of the smallest possible circle on which the object can move?arrow_forwardOne end of a cord is fixed and a small 0.400-kg object is attached to the other end, where it swings in a section of a vertical circle of radius 1.50 m, as shown in the figure below. When θ = 23.0°, the speed of the object is 5.50 m/s. An object is swinging to the right and upward from the end of a cord attached to a horizontal surface. The cord makes an angle θ with the vertical. An arrow labeled vector v points in the direction of motion. (a) At this instant, find the magnitude of the tension in the string.Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. N(b) At this instant, find the tangential and radial components of acceleration. at = Your response differs from the correct answer by more than 100%. m/s2 downward tangent to the circle ac = Your response differs from the correct answer by more…arrow_forward
- A wheel with a radius of 0.23 m and a mass of 7.31 kg spins about its axis at 6.53 radians per second. What is the kinetic energy of the wheel in J? Treat the wheel as a cylinder of constant density.arrow_forwardA solid brass ball of mass 22 g and radius 8.51 mm rolls smoothly along a loop-the-loop track when released from rest from a tall ramp leading to the loop-the-loop. The circular loop has a 17 cm radius. (a) What is the minimum height from which you can release the ball so that it will go around the loop-the-loop without falling off? For part (b), assume that the ball is released from rest at a height of 61.83 cm above the bottom of the loop. (b) What is the magnitude of the horizontal force on ball when it is at a height 17 cm going up the hoop? (c)What is the direction of the net force on the ball at the top of the hoop? Î =arrow_forwardA solid cylinder with a mass of (5 kg) and a radius of (0.2 m) (I =12MR2) is initially rolling along a flat plane with a linear velocity of (10ms). The cylinder then comes to the edge of a ramp that is inclined by (34degrees) to the horizontal and begins to roll up the ramp. How high above the flat plane does the cylinder reach before it starts to roll back down?arrow_forward
- The ability of the human eye to rapidly rotate was studied using contact lenses fitted with accelerometers. While a subject, whose eyeball has radius 1.25 cm, watches a moving object her eyeball rotates through 20.0° in a time interval of 64.1ms. Assume that the eye starts at rest, rotates with a constant angular acceleration during the first half of the interval, and then the rotation slows with a constant angular acceleration during the second half until it comes to rest. What is the magnitude of the angular acceleration of the eye? rad/s2arrow_forwardA ball (in the form of a spherical shell which has a moment of inertia of 2/3 M R^2) rolls down a roof, then falls to the ground. The ball has a mass of 1.65 g and a radius of 15.0 cm. The roof is inclined at 20.0 degrees and the ball rolls a distance of 3 meters along the roof before falling off. a) What is the angular speed of the ball at the moment it leaves the roof? b) If the distance from the end of the roof to the ground is 2.50 m, how many revolutions does the ball make before it hits the ground?arrow_forwardA child sits on a merry‑go‑round that has a diameter of 6.00 m. The child uses her legs to push the merry‑go‑round, making it go from rest to an angular speed of 18.0 rpm in a time of 37.0 s. What is the angular displacement Δθ of the merry‑go‑round, in units of radians (rad), during the time the child pushes the merry‑go‑round?arrow_forward
- A hollow sphere (I=\frac{2}{3}mr^2I=32mr2) of radius R rotates about a diameter with an angular speed \omegaω. The sphere then collapses (magically) under the action of internal forces to a final radius of R/2 with no change in its mass. What is the final angular speed of the sphere?arrow_forwardA string is wrapped around a disk of mass m = 2.2 kg and radius R = 0.08 m. Starting from rest, you pull the string with a constant force F = 9 N along a nearly frictionless surface. At the instant when the center of the disk has moved a distance x = 0.12 m, your hand has moved a distance of d = 0.27 m. m d (a) At this instant, what is the speed of the center of mass of the disk? Vcm = m/s (b) At this instant, how much rotational kinetic energy does the disk have relative to its center of mass? Krot = Additional Materials M eBookarrow_forwardA uniform thin spherical shell of mass M and radius R rotates about a vertical axis on frictionless bearings. A massless cord passes around the equator of the shell, over a pulley of rotational inertia I and radius r, and is attached to a small object of mass m. There is no friction on the pulley’s axle; the cord does not slip on the pulley. Determine the expression for the speed of the object after it falls a distance h from rest.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON