You are a contestant on "Who Wants to be a Millionaire?" You already have answered the $250,000 question correctly and now must decide if you would like to answer the $500,000 question. You can choose to walk away at this point with $250,000 in winnings or you may decide to answer the $500,000 question. If you answer the $500,000 question correctly, you can then choose to walk away with $500,000 in winnings or go on and try to answer the $1,000,000 question. If you answer the $1,000,000 question correctly, the game is over and you win $1,000,000. If you answer either the $500,000 or the $1,000,000 question incorrectly, the game is over immediately and you take home "only" $32,000. A feature of the game "Who Wants to be a Millionaire?" is that you have three "lifelines"-namely "50-50," "ask the audience," and "phone a friend." At this point (after answering the $250,000 question), you already have used two of these lifelines, but you have the "phone a friend" lifeline remaining. With this option, you may phone a friend to obtain advice on the correct answer to a question before giving your answer. You may use this option only once (i.e., you can use it on either the $500,000 question or the $1,000,000 question, but not both). .you. Since some of your friends are smarter than you are, "phone a friend" significantly improves your odds for answering a question correctly. Without "phone a friend," if you choose to answer the $500,000 question you have a 65 percent chance of answering correctly, and if you choose to answer the S1,000,000 question you have a 50 percent chance of answering correctly (the questions get progressively more difficult). With "phone a friend," you have an 80 percent chance of

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
100%
Who Wants to Be a Millonalre?
You are a contestant on "Who Wants to be a Millionaire?" You already have answered the $250,000 question correctly and
now must decide if you would like to answer the $500,000 question. You can choose to walk away at this point with
$250,000 in winnings or you may decide to answer the S500,000 question. If you answer the $500,000 question correctly,
you can then choose to walk away with $500,000 in winnings or go on and try to answer the $1,000,000 question. If you
answer the $1,000,000 question correctly, the game is over and you win $1,000,000. If you answer either the $500,000 or
the $1,000,000 question incorrectly, the game is over immediately and you take home "only" $32,000.
A feature of the game "Who Wants to be a Millionaire?" is that you have three "lifelines"-namely "50-50," "ask the
audience," and "phone a friend." At this point (after answering the $250,000 question), you already have used two of these
lifelines, but you have the "phone a friend" lifeline remaining. With this option, you may phone a friend to obtain advice on
the correct answer to a question before giving your answer. You may use this option only once (i.e., you can use it on
either the $500,000 question or the $1,000,000 question, but not both).
Since some of your friends are smarter than you are, "phone a friend" significantly improves your odds for answering a
question correctly. Without "phone a friend," if you choose to answer the $500,000 question you have a 65 percent chance
of answering correctly, and if you choose to answer the $1,000,000 question you have a 50 percent chance of answering
correctly (the questions get progressively more difficult). With "phone a friend," you have an 80 percent chance of
answering the $500,000 question correctly and a 65 percent chance of answering the $1,000,000 question correctly.
a. Use TreePlan to construct and solve a decision tree to decide what to do. What is the best course of action, assuming
your goal is to maximize your expected winnings?
b. Use the equivalent lottery method to determine your personal utility function (in particular, your utility values for all of
the possible payoffs in the game).
c. Re-solve the decision tree, replacing the payoffs with your utility values, to maximize your expected utility. Does the best
course of action change?
Transcribed Image Text:Who Wants to Be a Millonalre? You are a contestant on "Who Wants to be a Millionaire?" You already have answered the $250,000 question correctly and now must decide if you would like to answer the $500,000 question. You can choose to walk away at this point with $250,000 in winnings or you may decide to answer the S500,000 question. If you answer the $500,000 question correctly, you can then choose to walk away with $500,000 in winnings or go on and try to answer the $1,000,000 question. If you answer the $1,000,000 question correctly, the game is over and you win $1,000,000. If you answer either the $500,000 or the $1,000,000 question incorrectly, the game is over immediately and you take home "only" $32,000. A feature of the game "Who Wants to be a Millionaire?" is that you have three "lifelines"-namely "50-50," "ask the audience," and "phone a friend." At this point (after answering the $250,000 question), you already have used two of these lifelines, but you have the "phone a friend" lifeline remaining. With this option, you may phone a friend to obtain advice on the correct answer to a question before giving your answer. You may use this option only once (i.e., you can use it on either the $500,000 question or the $1,000,000 question, but not both). Since some of your friends are smarter than you are, "phone a friend" significantly improves your odds for answering a question correctly. Without "phone a friend," if you choose to answer the $500,000 question you have a 65 percent chance of answering correctly, and if you choose to answer the $1,000,000 question you have a 50 percent chance of answering correctly (the questions get progressively more difficult). With "phone a friend," you have an 80 percent chance of answering the $500,000 question correctly and a 65 percent chance of answering the $1,000,000 question correctly. a. Use TreePlan to construct and solve a decision tree to decide what to do. What is the best course of action, assuming your goal is to maximize your expected winnings? b. Use the equivalent lottery method to determine your personal utility function (in particular, your utility values for all of the possible payoffs in the game). c. Re-solve the decision tree, replacing the payoffs with your utility values, to maximize your expected utility. Does the best course of action change?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 32 images

Blurred answer
Knowledge Booster
Problems on Dynamic Programming
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education