x(п) %3D п а" и(-n) 5. =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

please solve the z-transform for 5, 6 in similar way to the solved one above if that possible

4.
х(п) %3D п а" и(п)
1
Z{a"u(n)} =
ROC : |z| > |a|
1 - az-1
d
And Z{n x(n)} = -z
dz
X(z) , differentiationin z – domain property
d
1
Zin a"u(п)}
here x(n) = a"u(n)
= -Z
dz 1- az-1
|
d
dz
(1 – az-1)2
d
(1 – az"
= -z
-1) 음1-1.
(1 – az-1)
|
dz
0 + a(-1)z-2
= -z
(1 – az-1)2
a z-1
ROC : |z| > |a|
(1 – az-1)2 '
a z-1
Thus
па" и(п)
ROC : |z| > ]a|
|(1-az-1)2
x (п) %3D п а" и(-п)
x(п) %3D п (п + 1) и (п)
5.
6.
||
Transcribed Image Text:4. х(п) %3D п а" и(п) 1 Z{a"u(n)} = ROC : |z| > |a| 1 - az-1 d And Z{n x(n)} = -z dz X(z) , differentiationin z – domain property d 1 Zin a"u(п)} here x(n) = a"u(n) = -Z dz 1- az-1 | d dz (1 – az-1)2 d (1 – az" = -z -1) 음1-1. (1 – az-1) | dz 0 + a(-1)z-2 = -z (1 – az-1)2 a z-1 ROC : |z| > |a| (1 – az-1)2 ' a z-1 Thus па" и(п) ROC : |z| > ]a| |(1-az-1)2 x (п) %3D п а" и(-п) x(п) %3D п (п + 1) и (п) 5. 6. ||
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Laplace Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,