Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question
Consider the function \( F(x,y) = e^{-x^2/5 - y^2/5} \) and the point \( P(-2,2) \).

a. Find the unit vectors that give the direction of steepest ascent and steepest descent at P.

b. Find a vector that points in a direction of no change in the function at P.

---

a. The direction of steepest ascent is:

\[
\left( \frac{\sqrt{2}\sqrt{\frac{8}{5}}}{2e^{\frac{4}{5}}}, \frac{\sqrt{2}\sqrt{\frac{8}{5}}}{2e^{\frac{4}{5}}} \right).
\]

The direction of steepest descent is:

\[
\left( -\frac{\sqrt{2}\sqrt{\frac{8}{5}}}{2e^{\frac{4}{5}}}, -\frac{\sqrt{2}\sqrt{\frac{8}{5}}}{2e^{\frac{4}{5}}} \right).
\]

b. Which of the following vectors points in a direction of no change of the function at \( P(-2,2) \)?

- A. \( (1,0) \)
- B. \( (-1,-1) \)
- C. \( \boxed{(1,-1)} \)
- D. \( (0,1) \)
expand button
Transcribed Image Text:Consider the function \( F(x,y) = e^{-x^2/5 - y^2/5} \) and the point \( P(-2,2) \). a. Find the unit vectors that give the direction of steepest ascent and steepest descent at P. b. Find a vector that points in a direction of no change in the function at P. --- a. The direction of steepest ascent is: \[ \left( \frac{\sqrt{2}\sqrt{\frac{8}{5}}}{2e^{\frac{4}{5}}}, \frac{\sqrt{2}\sqrt{\frac{8}{5}}}{2e^{\frac{4}{5}}} \right). \] The direction of steepest descent is: \[ \left( -\frac{\sqrt{2}\sqrt{\frac{8}{5}}}{2e^{\frac{4}{5}}}, -\frac{\sqrt{2}\sqrt{\frac{8}{5}}}{2e^{\frac{4}{5}}} \right). \] b. Which of the following vectors points in a direction of no change of the function at \( P(-2,2) \)? - A. \( (1,0) \) - B. \( (-1,-1) \) - C. \( \boxed{(1,-1)} \) - D. \( (0,1) \)
Expert Solution
Check Mark
Step 1

Advanced Math homework question answer, step 1, image 1

Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,