Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question

Need help for #23

### Differential Equations

#### Problem 23

\[
\mathbf{x'} = \begin{bmatrix} 3 & -1 \\ 5 & -3 \end{bmatrix} \mathbf{x}; \, \mathbf{x}_1 = e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \, \mathbf{x}_2 = e^{-2t} \begin{bmatrix} 1 \\ 5 \end{bmatrix}
\]

#### Problem 24

\[
\mathbf{x'} = \begin{bmatrix} 4 & 1 \\ -2 & 1 \end{bmatrix} \mathbf{x}; \, \mathbf{x}_1 = e^{3t} \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \, \mathbf{x}_2 = e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix}
\]

#### Problem 25

\[
\mathbf{x'} = \begin{bmatrix} 4 & -3 \\ 6 & -7 \end{bmatrix} \mathbf{x}; \, \mathbf{x}_1 = \begin{bmatrix} 3e^{2t} \\ 2e^{2t} \end{bmatrix}, \, \mathbf{x}_2 = \begin{bmatrix} e^{-5t} \\ 3e^{-5t} \end{bmatrix}
\]

#### Problem 26

\[
\mathbf{x'} = \begin{bmatrix} 3 & -2 & 0 \\ -1 & 3 & -2 \\ 0 & -1 & 3 \end{bmatrix} \mathbf{x}; \, \mathbf{x}_1 = e^{t} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix},
\]

(Note: In Problem 26, the solution for \(\mathbf{x}_2\) is incomplete in the image.)
expand button
Transcribed Image Text:### Differential Equations #### Problem 23 \[ \mathbf{x'} = \begin{bmatrix} 3 & -1 \\ 5 & -3 \end{bmatrix} \mathbf{x}; \, \mathbf{x}_1 = e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \, \mathbf{x}_2 = e^{-2t} \begin{bmatrix} 1 \\ 5 \end{bmatrix} \] #### Problem 24 \[ \mathbf{x'} = \begin{bmatrix} 4 & 1 \\ -2 & 1 \end{bmatrix} \mathbf{x}; \, \mathbf{x}_1 = e^{3t} \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \, \mathbf{x}_2 = e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \] #### Problem 25 \[ \mathbf{x'} = \begin{bmatrix} 4 & -3 \\ 6 & -7 \end{bmatrix} \mathbf{x}; \, \mathbf{x}_1 = \begin{bmatrix} 3e^{2t} \\ 2e^{2t} \end{bmatrix}, \, \mathbf{x}_2 = \begin{bmatrix} e^{-5t} \\ 3e^{-5t} \end{bmatrix} \] #### Problem 26 \[ \mathbf{x'} = \begin{bmatrix} 3 & -2 & 0 \\ -1 & 3 & -2 \\ 0 & -1 & 3 \end{bmatrix} \mathbf{x}; \, \mathbf{x}_1 = e^{t} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \] (Note: In Problem 26, the solution for \(\mathbf{x}_2\) is incomplete in the image.)
### Systems of Differential Equations

#### Problems 15 to 20

1. **Problem 15:**
   \[
   x' = y + z, \quad y' = z + x, \quad z' = x + y
   \]

2. **Problem 16:**
   \[
   x' = 2x - 3y, \quad y' = x - 2z, \quad z' = 5y - 7z
   \]

3. **Problem 17:**
   \[
   x' = 3x - 4y + z + t, \quad y' = x - 3z + t^2, \quad z' = 6y - 7z + t^3
   \]

4. **Problem 18:**
   \[
   x' = tx - y + e^tz, \quad y' = 2x + t^2y - z, \quad z' = e^{-t}x + 3ty + t^3z
   \]

5. **Problem 19:**
   \[
   x_1' = x_2, \quad x_2' = 2x_3, \quad x_3' = 3x_4, \quad x_4' = 4x_1
   \]

6. **Problem 20:**
   \[
   x_1' = x_2 + x_3 + 1, \quad x_2' = x_3 + x_4 + t, \quad x_3' = x_1 + x_4 + t^2, \quad x_4' = x_1 + x_2 + t^3
   \]

#### Instructions for Problems 21 through 30:

- First, verify that the given vectors are solutions of the given system.
- Use the Wronskian to show that they are linearly independent.
- Finally, write the general solution of the system.

#### Example Problems 21 and 22:

7. **Problem 21:**
   \[
   x' = \begin{bmatrix} 4 & 2 \\ -3 & -1 \end{bmatrix} x; \quad x_1 = \begin{bmatrix} 2e^t \\ -3e
expand button
Transcribed Image Text:### Systems of Differential Equations #### Problems 15 to 20 1. **Problem 15:** \[ x' = y + z, \quad y' = z + x, \quad z' = x + y \] 2. **Problem 16:** \[ x' = 2x - 3y, \quad y' = x - 2z, \quad z' = 5y - 7z \] 3. **Problem 17:** \[ x' = 3x - 4y + z + t, \quad y' = x - 3z + t^2, \quad z' = 6y - 7z + t^3 \] 4. **Problem 18:** \[ x' = tx - y + e^tz, \quad y' = 2x + t^2y - z, \quad z' = e^{-t}x + 3ty + t^3z \] 5. **Problem 19:** \[ x_1' = x_2, \quad x_2' = 2x_3, \quad x_3' = 3x_4, \quad x_4' = 4x_1 \] 6. **Problem 20:** \[ x_1' = x_2 + x_3 + 1, \quad x_2' = x_3 + x_4 + t, \quad x_3' = x_1 + x_4 + t^2, \quad x_4' = x_1 + x_2 + t^3 \] #### Instructions for Problems 21 through 30: - First, verify that the given vectors are solutions of the given system. - Use the Wronskian to show that they are linearly independent. - Finally, write the general solution of the system. #### Example Problems 21 and 22: 7. **Problem 21:** \[ x' = \begin{bmatrix} 4 & 2 \\ -3 & -1 \end{bmatrix} x; \quad x_1 = \begin{bmatrix} 2e^t \\ -3e
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,