Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN: 9780134463216
Author: Robert F. Blitzer
Publisher: PEARSON
Bartleby Related Questions Icon

Related questions

Question
**Expand the Logarithmic Expression Fully**

Write the given logarithmic expression as a sum or difference of logarithms.

**Expression:**

\[ \log_2 \left( \frac{y^5 \sqrt{x}}{z^9} \right) \]

---

**Explanation:**

The expression involves a logarithm with a quotient, power, and root. We'll use the properties of logarithms to expand it:

- **Quotient Rule:** \(\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N\)
- **Power Rule:** \(\log_b (M^p) = p \cdot \log_b M\)
- **Root as a Power:** \(\sqrt[n]{M} = M^{1/n}\)

Using these rules, we can expand the expression as follows:

1. Apply the quotient rule:
   \[
   \log_2 \left( \frac{y^5 \sqrt{x}}{z^9} \right) = \log_2 (y^5 \sqrt{x}) - \log_2 (z^9)
   \]

2. Apply the power rule separately to \(y^5\) and \(z^9\):
   \[
   \log_2 (y^5 \sqrt{x}) = \log_2 (y^5) + \log_2 (\sqrt{x})
   \]
   \[
   \log_2 (y^5) = 5 \cdot \log_2 y
   \]
   \[
   \log_2 (z^9) = 9 \cdot \log_2 z
   \]

3. Express \(\sqrt{x}\) as \(x^{1/2}\) and apply the power rule:
   \[
   \log_2 (\sqrt{x}) = \log_2 (x^{1/2}) = \frac{1}{2} \cdot \log_2 x
   \]

4. Substitute back to get the fully expanded expression:
   \[
   5 \cdot \log_2 y + \frac{1}{2} \cdot \log_2 x - 9 \cdot \log_2 z
   \]

Thus, the expanded form of the logarithmic expression is:
\[ 5 \cdot \log
expand button
Transcribed Image Text:**Expand the Logarithmic Expression Fully** Write the given logarithmic expression as a sum or difference of logarithms. **Expression:** \[ \log_2 \left( \frac{y^5 \sqrt{x}}{z^9} \right) \] --- **Explanation:** The expression involves a logarithm with a quotient, power, and root. We'll use the properties of logarithms to expand it: - **Quotient Rule:** \(\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N\) - **Power Rule:** \(\log_b (M^p) = p \cdot \log_b M\) - **Root as a Power:** \(\sqrt[n]{M} = M^{1/n}\) Using these rules, we can expand the expression as follows: 1. Apply the quotient rule: \[ \log_2 \left( \frac{y^5 \sqrt{x}}{z^9} \right) = \log_2 (y^5 \sqrt{x}) - \log_2 (z^9) \] 2. Apply the power rule separately to \(y^5\) and \(z^9\): \[ \log_2 (y^5 \sqrt{x}) = \log_2 (y^5) + \log_2 (\sqrt{x}) \] \[ \log_2 (y^5) = 5 \cdot \log_2 y \] \[ \log_2 (z^9) = 9 \cdot \log_2 z \] 3. Express \(\sqrt{x}\) as \(x^{1/2}\) and apply the power rule: \[ \log_2 (\sqrt{x}) = \log_2 (x^{1/2}) = \frac{1}{2} \cdot \log_2 x \] 4. Substitute back to get the fully expanded expression: \[ 5 \cdot \log_2 y + \frac{1}{2} \cdot \log_2 x - 9 \cdot \log_2 z \] Thus, the expanded form of the logarithmic expression is: \[ 5 \cdot \log
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:PEARSON
Text book image
Contemporary Abstract Algebra
Algebra
ISBN:9781305657960
Author:Joseph Gallian
Publisher:Cengage Learning
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:9780135163078
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:9780980232776
Author:Gilbert Strang
Publisher:Wellesley-Cambridge Press
Text book image
College Algebra (Collegiate Math)
Algebra
ISBN:9780077836344
Author:Julie Miller, Donna Gerken
Publisher:McGraw-Hill Education