
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN: 9780134463216
Author: Robert F. Blitzer
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
![**Expand the Logarithmic Expression Fully**
Write the given logarithmic expression as a sum or difference of logarithms.
**Expression:**
\[ \log_2 \left( \frac{y^5 \sqrt{x}}{z^9} \right) \]
---
**Explanation:**
The expression involves a logarithm with a quotient, power, and root. We'll use the properties of logarithms to expand it:
- **Quotient Rule:** \(\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N\)
- **Power Rule:** \(\log_b (M^p) = p \cdot \log_b M\)
- **Root as a Power:** \(\sqrt[n]{M} = M^{1/n}\)
Using these rules, we can expand the expression as follows:
1. Apply the quotient rule:
\[
\log_2 \left( \frac{y^5 \sqrt{x}}{z^9} \right) = \log_2 (y^5 \sqrt{x}) - \log_2 (z^9)
\]
2. Apply the power rule separately to \(y^5\) and \(z^9\):
\[
\log_2 (y^5 \sqrt{x}) = \log_2 (y^5) + \log_2 (\sqrt{x})
\]
\[
\log_2 (y^5) = 5 \cdot \log_2 y
\]
\[
\log_2 (z^9) = 9 \cdot \log_2 z
\]
3. Express \(\sqrt{x}\) as \(x^{1/2}\) and apply the power rule:
\[
\log_2 (\sqrt{x}) = \log_2 (x^{1/2}) = \frac{1}{2} \cdot \log_2 x
\]
4. Substitute back to get the fully expanded expression:
\[
5 \cdot \log_2 y + \frac{1}{2} \cdot \log_2 x - 9 \cdot \log_2 z
\]
Thus, the expanded form of the logarithmic expression is:
\[ 5 \cdot \log](https://content.bartleby.com/qna-images/question/16698408-ee4b-436e-ae87-879a478aa341/725cd925-ab59-4762-97a6-8da95fc2f1ff/tk85pw_thumbnail.jpeg)
Transcribed Image Text:**Expand the Logarithmic Expression Fully**
Write the given logarithmic expression as a sum or difference of logarithms.
**Expression:**
\[ \log_2 \left( \frac{y^5 \sqrt{x}}{z^9} \right) \]
---
**Explanation:**
The expression involves a logarithm with a quotient, power, and root. We'll use the properties of logarithms to expand it:
- **Quotient Rule:** \(\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N\)
- **Power Rule:** \(\log_b (M^p) = p \cdot \log_b M\)
- **Root as a Power:** \(\sqrt[n]{M} = M^{1/n}\)
Using these rules, we can expand the expression as follows:
1. Apply the quotient rule:
\[
\log_2 \left( \frac{y^5 \sqrt{x}}{z^9} \right) = \log_2 (y^5 \sqrt{x}) - \log_2 (z^9)
\]
2. Apply the power rule separately to \(y^5\) and \(z^9\):
\[
\log_2 (y^5 \sqrt{x}) = \log_2 (y^5) + \log_2 (\sqrt{x})
\]
\[
\log_2 (y^5) = 5 \cdot \log_2 y
\]
\[
\log_2 (z^9) = 9 \cdot \log_2 z
\]
3. Express \(\sqrt{x}\) as \(x^{1/2}\) and apply the power rule:
\[
\log_2 (\sqrt{x}) = \log_2 (x^{1/2}) = \frac{1}{2} \cdot \log_2 x
\]
4. Substitute back to get the fully expanded expression:
\[
5 \cdot \log_2 y + \frac{1}{2} \cdot \log_2 x - 9 \cdot \log_2 z
\]
Thus, the expanded form of the logarithmic expression is:
\[ 5 \cdot \log
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 3 images

Knowledge Booster
Recommended textbooks for you
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:9781305657960
Author:Joseph Gallian
Publisher:Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Algebra And Trigonometry (11th Edition)
Algebra
ISBN:9780135163078
Author:Michael Sullivan
Publisher:PEARSON

Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:9780980232776
Author:Gilbert Strang
Publisher:Wellesley-Cambridge Press

College Algebra (Collegiate Math)
Algebra
ISBN:9780077836344
Author:Julie Miller, Donna Gerken
Publisher:McGraw-Hill Education