
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:Write equations for both the electric and magnetic fields for an electromagnetic wave in the red part of the visible spectrum that has a wavelength of 714 nm and a peak electric field magnitude of 2.0 V/m. (Use the following as necessary: t and x. Assume that E is in
volts per meter, B is in teslas, t is in seconds, and x is in meters. Do not include units in your answer. Assume that E = 0 and B = 0 when x = 0 and t = 0.)
E(x, t) =
B(x, t) =
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 5 steps with 5 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Suppose a star is 8.59 x 1018 m from Earth. Imagine a pulse of radio waves is emitted toward Earth from the surface of this star. How long (in years) would it take to reach Earth? years (b) The Sun is 1.50 x 1011 m from Earth. How long (in minutes) does it take sunlight to reach Earth? minutes (c) The Moon is 3.84 x 108 m from Earth. How long (in s) does it take for a high-intensity laser beam to travel from Earth to the Moon and back?arrow_forwardWrite equations for both the electric and magnetic fields for an electromagnetic wave in the red part of the visible spectrum that has a wavelength of 714 nm and a peak electric field magnitude of 1.8 V/m. (Use the following as necessary: t and x. Assume that E is in volts per meter, B is in teslas, t is in seconds, and x is in meters. Do not include units in your answer. Assume that E = 0 and B = 0 when x = 0 and t = 0.) FIND: E(x,t) = ? B(x,t) = ?arrow_forwardConsider regions of the EM spectrum. In order to study the structure of a crystalline solid, you want to illuminate it with EM radiation whose wavelength is the same as the spacing of the atoms in the crystal (0.190 nm). A) What is the frequency of the EM radiation in Hertz? B) In what part of the EM spectrum (radio, visible, etc.) does it lie?arrow_forward
- What is the magnetic field strength (B) for an electromagnetic wave that has an electric field strength E)=770 V/m? = T ) Note that you can enter the answer in scientific notation using "E": x.yz times 109 is represented as x.yzEq. For example, 1.23 x 10-9 can be entered as 1.23E-9.arrow_forwardThe electric field of an electromagnetic wave in a vacuum is Ey =( 23.0 V/m)cos((V/m)cos(( 9.78 ×108)x−ωt), where x is in mm and t is in s. What s the wave's wavelength? Express your answer with the appropriate units. What is the wave's frequency? Express your answer with the appropriate units. What is the wave's magnetic field amplitude? Express your answer with the appropriate units.arrow_forwardCompute the wavelength of the radio waves from the following stations. (a) an AM station operating at a frequency of 790 kHz m(b) an FM station with a frequency of 94.3 MHz marrow_forward
- Calculate the following for an electromagnetic wave with a wave length of 2.73x10^-4 m. 1. Frequency, f=? 2. Period, T=? 3. Electromagnetic band type (x-ray, Radio, etc..)arrow_forwardPlease keep all decimalsarrow_forwardFind the wavelengths of electromagnetic waves with the following frequencies. (Assume the waves are traveling in a vacuum.) a) 4.50 ✕ 1019 Hz (Enter your answer in pm.) b) 4.00 ✕ 109 Hz (Enter your answer in cm.)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON