Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question
Needed to be solved all parts correctly I added a example too just to understand how you Have to do Not use examples in the given example Please solve correctly 100 percent unique solution needed By hand solution needed By hand solution needed
Write an example of a function whose
derivative can be found by using the following
rules:
a) Product rule and special function
differentiation rules
b) Power rule, quotient rule, and chain rule
c) Chain rule twice
d) Implicit differentiation and special function
differentiation rule
expand button
Transcribed Image Text:Write an example of a function whose derivative can be found by using the following rules: a) Product rule and special function differentiation rules b) Power rule, quotient rule, and chain rule c) Chain rule twice d) Implicit differentiation and special function differentiation rule
(a) PRODUCT RULE EXAMPLES:
f(x) = (3x²+4) (2x³-3x)
f'(x) = (3x² + 4) £x (2x³ =3x) + x ( 3X²+4) (2x³-3x)
d/dx (2x³-3x): 6x² 3! dx (3x²+4) =GX
f'(x) = (3x²+4) (GX²-3) + (GX) (RX³-3x)
18x4-9x2 + 24x² -12 +12x" -18x²
[ƒ¹(x) = 30 x² - 3X²-/2
PUNCTION
SPECIAL A DIFFERENTIAL RULES:
LOENTITIES
d
ax
d
dx
d
dx
d
dx
n
*²
ex.
x
=e
n-l
Sinx cos X
COS X = SHAX
b) POWER RULE.
f(x) = x²
f'(x) = 2x^
f(x)=2x
21
QUOTIENT RULE:
f(x)= x² + 3x
xf4
EXAMPLES
=
|f'(x)=
dt
(ssint + 8cust)
= (5 sint) + & (&cost)
50 sint
+ &at cust
+-8 sint
Scost
-ssin t
f'(x) = (x+4) (2x + 3) - (X+9x) (1)
(x+4)²
= 5cost
2x+3x18x+12-X-3X
2
(x+4)
x² 18x+12
(x+4)2
(x+2)(x+4)
(x+4)2
CHAIN RULT:
f(x) = (x²+1) ³
f'(x) = 3 (x²+1
f'(x) = 6x (x²+
expand button
Transcribed Image Text:(a) PRODUCT RULE EXAMPLES: f(x) = (3x²+4) (2x³-3x) f'(x) = (3x² + 4) £x (2x³ =3x) + x ( 3X²+4) (2x³-3x) d/dx (2x³-3x): 6x² 3! dx (3x²+4) =GX f'(x) = (3x²+4) (GX²-3) + (GX) (RX³-3x) 18x4-9x2 + 24x² -12 +12x" -18x² [ƒ¹(x) = 30 x² - 3X²-/2 PUNCTION SPECIAL A DIFFERENTIAL RULES: LOENTITIES d ax d dx d dx d dx n *² ex. x =e n-l Sinx cos X COS X = SHAX b) POWER RULE. f(x) = x² f'(x) = 2x^ f(x)=2x 21 QUOTIENT RULE: f(x)= x² + 3x xf4 EXAMPLES = |f'(x)= dt (ssint + 8cust) = (5 sint) + & (&cost) 50 sint + &at cust +-8 sint Scost -ssin t f'(x) = (x+4) (2x + 3) - (X+9x) (1) (x+4)² = 5cost 2x+3x18x+12-X-3X 2 (x+4) x² 18x+12 (x+4)2 (x+2)(x+4) (x+4)2 CHAIN RULT: f(x) = (x²+1) ³ f'(x) = 3 (x²+1 f'(x) = 6x (x²+
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,