Why is the following situation impossible? In a large city with an air-pollution problem, a bus has no combustion engine. It runs over its citywide route on energy drawn from a large, rapidly rotating flywheel under the floor of the bus. The flywheel is spun up to its maximum rotation rate of 3 000 rev/min by an electric motor at the bus terminal. Every time the bus speeds up, the flywheel slows down slightly. The bus is equipped with regenerative braking so that the flywheel can speed up when the bus slows down. The flywheel is a uniform solid cylinder with mass 1 200 kg and radius 0.500 m. The bus body does work against air resistance and rolling resistance at the average rate of 25.0 hp as it travels its route with an average speed of 35.0 km/h.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
100%
Why is the following situation impossible? In a large city with an air-pollution problem, a bus has no combustion engine. It runs over its citywide route on energy drawn from a large, rapidly rotating
flywheel under the floor of the bus. The flywheel is spun up to its maximum rotation rate of 3 000 rev/min by an electric motor at the bus terminal. Every time the bus speeds up, the flywheel slows
down slightly. The bus is equipped with regenerative braking so that the flywheel can speed up when the bus slows down. The flywheel is a uniform solid cylinder with mass 1 200 kg and radius
0.500 m. The bus body does work against air resistance and rolling resistance at the average rate of 25.0 hp as it travels its route with an average speed of 35.0 km/h.
Transcribed Image Text:Why is the following situation impossible? In a large city with an air-pollution problem, a bus has no combustion engine. It runs over its citywide route on energy drawn from a large, rapidly rotating flywheel under the floor of the bus. The flywheel is spun up to its maximum rotation rate of 3 000 rev/min by an electric motor at the bus terminal. Every time the bus speeds up, the flywheel slows down slightly. The bus is equipped with regenerative braking so that the flywheel can speed up when the bus slows down. The flywheel is a uniform solid cylinder with mass 1 200 kg and radius 0.500 m. The bus body does work against air resistance and rolling resistance at the average rate of 25.0 hp as it travels its route with an average speed of 35.0 km/h.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON