Which of the following gives the eigenvalues and eigenfunctions of the Sturm-Liouville problem (SLP) y"(x) + Ay(x) = 0, y'(0) = 0, y(2) = 0. (Hint: There is no eigenvalue for 1< 0) A An = [ , (2п-1) π Yn (x) = Cn cos 8 (2n-1) -пх|,Сп + 0, п %3D 1,2, ... An = (nn)², yn (x) = cn cos(nnx),cn # 0, n = 1,2, .... %3D (2n-1) An = [], y,(x) = c, sin [nx].Cn + 0, n = 1,2, . (2n-1) D An 3 (), УлСх) — сп sin (x), сп + 0, п %3D 1,2, ... y,(x) = cn cos (2n-1) (2n-1) пх|,сп + 0, п %3D 1,2, ....

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Which of the following gives the eigenvalues and eigenfunctions of the Sturm-Liouville
problem (SLP)
y"(x) + ly(x) = 0, y'(0) = 0, y(2) = 0.
(Hint: There is no eigenvalue for 1 < 0)
A
(2п-1)
(2п-1)
An = [ , y,(x) = cn cos [ x|, Cn + 0, n = 1,2, ..
8
B
An 3 (пл)?, уn (x) — с, cos(ппх), с, + 0, п — 1,2, ....
(2n-1)
(2п-1)
= C, sin [nx],
Сп + 0, п %3 1,2, ....
2
D
2
(), Yn(x) = cn sin (x),Cn + 0, n = 1,2, ...
E
a, y,x) = Cn cos
(2n-1)
πχ
[(2n-1)
Tx, Cn + 0, n = 1,2, ....
4
4
Transcribed Image Text:Which of the following gives the eigenvalues and eigenfunctions of the Sturm-Liouville problem (SLP) y"(x) + ly(x) = 0, y'(0) = 0, y(2) = 0. (Hint: There is no eigenvalue for 1 < 0) A (2п-1) (2п-1) An = [ , y,(x) = cn cos [ x|, Cn + 0, n = 1,2, .. 8 B An 3 (пл)?, уn (x) — с, cos(ппх), с, + 0, п — 1,2, .... (2n-1) (2п-1) = C, sin [nx], Сп + 0, п %3 1,2, .... 2 D 2 (), Yn(x) = cn sin (x),Cn + 0, n = 1,2, ... E a, y,x) = Cn cos (2n-1) πχ [(2n-1) Tx, Cn + 0, n = 1,2, .... 4 4
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,