When people make estimates, they are influenced by anchors to their estimates. A study was conducted in which students were asked to estimate the number of calories in a cheeseburger. One group was asked to do this after thinking about a calorie-laden cheesecake. A second group was asked to do this after thinking about an organic fruit salad. The mean number of calories estimated in a cheeseburger was 780 for the group that thought about the cheesecake and 1,041 for the group that thought about the organic fruit salad. (Data extracted from “Drilling Down, Sizing-Up a Cheeseburger’s Caloric Heft,” The New York Times, October 4, 2010, p. B2.) Suppose that the study was based on a sample of 20 people who thought about the cheesecake first and 20 people who thought about the organic fruit salad first, and the standard deviation of the number of calories in the cheeseburger was 128 for the people who thought about the cheesecake first and 140 for the people who thought about the organic fruit salad first. State the null and alternative hypotheses if you want to deter-mine whether the mean estimated number of calories in the cheeseburger is lower for the people who thought about the cheesecake first than for the people who thought about the organic fruit salad first. In the context of this study, what is the meaning of the Type I ­error? In the context of this study, what is the meaning of the Type II error? At the 0.01 level of significance, is there evidence that the mean estimated number of calories in the cheeseburger is lower for the people who thought about the cheesecake first than for the people who thought about the organic fruit salad first?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Topic Video
Question

When people make estimates, they are influenced by anchors to their estimates. A study was conducted in which students were asked to estimate the number of calories in a cheeseburger. One group was asked to do this after thinking about a calorie-laden cheesecake. A second group was asked to do this after thinking about an organic fruit salad. The mean number of calories estimated in a cheeseburger was 780 for the group that thought about the cheesecake and 1,041 for the group that thought about the organic fruit salad. (Data extracted from “Drilling Down, Sizing-Up a Cheeseburger’s Caloric Heft,” The New York Times, October 4, 2010, p. B2.) Suppose that the study was based on a sample of 20 people who thought about the cheesecake first and 20 people who thought about the organic fruit salad first, and the standard deviation of the number of calories in the cheeseburger was 128 for the people who thought about the cheesecake first and 140 for the people who thought about the organic fruit salad first.

  1. State the null and alternative hypotheses if you want to deter-mine whether the mean estimated number of calories in the cheeseburger is lower for the people who thought about the cheesecake first than for the people who thought about the organic fruit salad first.
  2. In the context of this study, what is the meaning of the Type I ­error?
  3. In the context of this study, what is the meaning of the Type II error?
  4. At the 0.01 level of significance, is there evidence that the mean estimated number of calories in the cheeseburger is lower for the people who thought about the cheesecake first than for the people who thought about the organic fruit salad first?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Hypothesis Tests and Confidence Intervals for Means
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman