College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
When an aperture's diameter matches the wavelength of the waves being diffracted, the effects of diffraction become noticeable. (A) At what speed would a 75-kg student's de Broglie wavelength be the same as a doorway's 0.76-m width? (b) How long will it take the student to traverse 5.0 millimeters at current speed? (In contrast, the universe is thought to have existed for about 4 * 1017 seconds.)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please asaparrow_forward: In class we did a problem where we saw that Planck’s law, which is given byI(λ, T) = 2πhc2λ5(ehc/λkbT − 1),at high wavelengths reduces to the classical predictionI(λ, T) = 2πckBTλ4.We did this by using the MacLaurin series for an exponential.1 + x +x22! +x33! +x44! + ...When we did this problem in class, we reasoned that,when the wavelength (λ) is large, the term hc/λkbTis small enough that any term (hc/λkbT)2 or (hc/λkbT)3 or any higher power is neglible. That’s how weshowed that, in the limit of large λ, Planck’s law reduces to the classical prediction. Now assume that wewant to make a slightly better approximation. We still assume that λ is large and therefore (hc/λkbT)3 and(hc/λkbT)4 and all higher powers are negligible, but now we want to work at the level of precision where(hc/λkbT)2is not negligible. What does Planck’s law reduce to in this case?arrow_forward(a) A vacuum photocell is sequentially illuminated with light of different wavelengths 2. A voltmeter is used to determine that there is a different voltage between the cathode and the anode. V (iii) Determine a relation for Planck's constant in terms of pairs of voltage measurements at different wavelengths such that W₁ cancels out. (iv) Evaluate Planck's constant for the following pair of measurements: measurement 1 finds = 447 nm and V=635 mV, and measurement 2 finds = : 502 nm and V=339 mV.arrow_forward
- This question relates to the practicality of searching for intelligent life in other solar systems by detecting their radio broadcasts (or aliens find us from ours). The closest stars are 4 light years away from us. How far away must you be from a 460 kHz radio station with power 50.0 kW for there to be only one photon per second per square meter? Assume that the photons spread out spherically. The area of a sphere is 4??24πr2. b) How many lightyears away is this?arrow_forwardA hydrogen atom is initially in the n = 6 state. It drops to the n = 2 state, emitting a photon in the process. (a) What is the energy (in ev) of the emitted photon? Enter a number. ergy of a hydrogen atom related to the quantum number n? What is the atom's initial energy? Its final energy? From these values and conservation of energy, what is the photon's energy? ev (b) What is the frequency (in Hz) of the emitted photon? Hz (c) What is the wavelength (in um) of the emitted photon? umarrow_forwardThe velocity of an electron is known to be 1.000×105 m/s, with an uncertainty of Av = 1.00×102 m/s. (a) What is the minimum uncertainty in the electron's position, Av, in meters? (b) How does this compare to the de Broglie wavelength of the electron? (c) One of your professors (m = 75.0 kg) is pacing at the front of the classroom, and you measure their velocity to an uncertainty of Av = 0.100 m/s. What is the minimum uncertainty in a measurement of their position? (d) How does this compare to the height of your professor?arrow_forward
- (a) Calculate the momentum of a visible photon that has a wavelength of 500 nm. (b) Find the velocity of an electron having the same momentum. (c) What is the energy of the electron, and how does it compare with the energy of the photon?arrow_forwardLouis de Broglie proposed that a particle of mass m and moving at the speed v will have a wavelength related to its momentum. Air molecules of mass 30 amu travel at speeds which you can take to be 500 ms-1. Calculate their de Broglie wavelength.arrow_forwardThe smallest atoms can themselves exhibit quantum mechanical behavior Calculate the de Broglie wavelength (in picometers) of a hydrogen atom traveling at 430 m/sm/s. Express your answer using three significant figures.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON