
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question

Transcribed Image Text:When a fluid flows through a
constriction in a pipe,
the velocity of the fluid
increases and the
pressure decreases.
O the velocity of the fluid
increases and the
pressure increases.
the velocity of the fluid
decreases and the
pressure decreases.
O the velocity of the fluid
decreases and the
pressure increases.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Show and expalin all steps in solution.Iso-butane at initial temperature of 10C is flowing with the entry velocity of 5 ft/s inside the pipe of 2 inch diameter. At the exit the diameter of the pipe is enlarged to 5 inches. The height change from the initial to final stage is 2 ft. Local gravity is 32.0 ft/s2. The initial pressure is 1.5 bar. Make a Temperature-Volume plot showing all pressures, temperatures and stages. What is mass flow rate in lbm/s? Use NIST to find the density at the inlet. What is the exit velocity of the stream in ft/s if the temperature of the iso-butane is the same, but pressure drops to 1.45 bar? What is internal energy change? Was heat added or removed from the pipe?arrow_forwardq; = K(P; − P;) - qj q; = K(P; - P;) where qi and q; are fluid flow at nodes i and j, respectively; P; and P; are fluid pressure at nodes i and j, respectively; and K is K = πD4 128μL where D is the diameter of the piper, μ is the viscosity, and L is the length of the pipe. The fluid flow is considered positive away from the node. The viscosity of the fluid is 9×10+ Pa's. a. Write the element matrix equation for the flow in the pipe element. b. The net flow rates into nodes 1 and 2 are 10 and 15 m³/s, respectively. The pressures at the nodes 6, 7, and 8 are all zero. The net flow rate into the nodes 3, 4, and 5 are all zero. What is the outflow rate for elements 4, 6, and 7? Q1 2 1 3 (4) 4 10 5 6 7 Elem 1 2 3 4 5 6 7 D(mm) 40 40 50 25 40 25 25 L(m) 1 1 4 2 3 3 8arrow_forwardIn flow separation, wake is defined as the region of flow trailing the body where the effects of the body on velocity are felt. True or false A pitot tube is used to measure only pressure head in a pipe flow. True or false The depth for nonuniform flow conditions is called normal depth. True or false Nozzles are flow devices used to accelerate a fluid stream by increasing the cross-sectional area of the flow. True or False For Poiseuille flow in a channel, the velocity profile is circular. True or falsearrow_forward
- For the single pump-pipe system below, what will be the changes for the operating point if we increase the pipe size but decrease the shaft speed of the pump? EB H₂ O The operating point will remain the same. O The operating point will occur either at a higher discharge or at a lower discharge, depending on the specific influence of each change. O The operating point will occur at a higher discharge. O The operating point will occur at a lower discharge.arrow_forwardIf a pipe with flowing water has a cross-sectional area nine times greater at point 2 than at point 1, what would be the velocity at point 2 if the velocity at point 1 (2 m/s)?arrow_forwardround to 3 significant figures: 0.70973 kilogramsarrow_forward
- 1.1. The pump whose performance curves are shown in Figure P1.1 is operated at 1750 rpm and is connected to a 2-in. i.d. galvanized iron pipe 175 ft long. What will be the flow rate and power input? 100 90 Head curve 80 70 60 50 40 -Efficiency 30 20 10 20 40 60 80 100 120 140 160 180 Flow rate (gpm) FIGURE P1.1 Performance curves for a pump with a 9-in. impeller and speed 1750 rpm. 1.7. If the pump and pipe arrangement of Problem 1.1 now includes an elevation increase of 30 ft, what flow will result? Head rise (ft); efficiency ()arrow_forwardI am having trouble with units on this problem I am pretty sure I have the right number but I am unsure about the unitsarrow_forward3. A pump steadily circulates oil used for lubricating heavy machine tools. The volume flow rate and temperature of the oil are 300 gal/min and 104°F, respectively. At 104°F, the kinematic viscosity and the specific gravity of the oil are 2.15 x 10-3 ft² /s and 0.89, respectively. The pipe lengths are 25 ft for the 4-in diameter pipe and 75 ft for the 3-in diameter one. The Schedule-40 steel pipe has an average roughness element size of 0.0018 in. If all minor losses can be ignored, evaluate how much power (in a unit of horsepower) the pump delivers to the oil. 6 ft 22 ft Flow 15 ft Discharge line 3-in Schedule 40 Suction line 4-in Schedule 40 steel pipe steel pipe Pumparrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY