College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps
Knowledge Booster
Similar questions
- A 0.60 kg block rests on a frictionless horizontal surface, where it is attached to a massless spring whose k-value equals 18.5 N/m. Let x be the displacement, where x = 0 is the equilibrium position and x > 0 when the spring is stretched. The block is pushed, and the spring compressed, until x, = -4.00 cm. It then is released from rest and undergoes simple harmonic motion. (a) What is the block's maximum speed (in m/s) after it is released? 1.23 X Mechanical energy is conserved in this system, and the gravitational term remains unchanged (since all motion is horizontal). Write an expression for mechanical energy that includes the kinetic energy and the potential energy of the spring. Which term(s) can be ignored when the spring is compressed and the block at rest? Which term(s) can be ignored when the block is moving at its greatest speed? Use the remaining terms, and the given quantities, to solve for the maximum speed. m/s (b) How fast is the block moving (in m/s) when the spring is…arrow_forwardTwo massless springs with spring constants 610 N/m and 116 N/m are hung from a hor- izontal support. A block of mass 6 kg is suspended from the pair of springs, as shown. When the block is in equilibrium, each spring is stretched an additional Ar. Then the block oscillates with an amplitude of 49 m and it passes through its equilibrium point with a speed of 539 m/s. 610 N/m -oooo² 6 kg -0000² 116 N/m What is the angular velocity of this system? The acceleration due to gravity is 9.8 m/s. 1. w = 15 2. w = 2 3. w = 11 rad/s 4. w = 13 5. w = 21 6. w = 16 7. w = 8 X 8. w = 4 9. w = 6 10. = 18arrow_forwardA spring hangs vertically from a ceiling. The spring constant of the spring is k=15 N/m. A 2kg object has been attached to the spring and the spring has already come to its new equilibrium. Someone pulls the object down by 5cm and releases it at time t = 0s. The spring and object begin to oscillate under simple harmonic motion. Find the total energy of the system, the maximum kinetic energy, the maximum potential energy, and the positions where the maximum energies occur. Answers: 0.01875 J, 0.01875 Jarrow_forward
- The potential energy of an object attached to a spring is 2.60 J at a location where the kinetic energy is 1.30 J. If the amplitude ?of the simple harmonic motion is 19.0 cm, calculate the spring constant ? and the magnitude of the largest force ?spring, max that the object experiences.arrow_forwardAn 8.00-kg block is attached to one end of a horizontal spring on a level, frictionless surface. The other end of the spring is attached to a vertical support. The spring obeys Hooke's law and has a spring constant of k =288 N/m. A physics student pulls the block outward so that the spring stretches by 50.0 cm. The student subsequently releases the block so that it undergoes simple harmonic motion. What is the maximum speed of the oscillator? a. 6.0 m/s b. 5.0 m/s c. 4.0 m/s d. 7.0 m/s e. 3.0 m/sarrow_forwardA spring Is suspended vertically from a celling. When a 2.80-kg mass is attached to the bottom of the spring, Its equilibrlum length Increases by 4.00 cm. If the mass Is further pulled down by 5.00 cm from its new equilibrlum length and released, what is the frequency of the simple harmonic motion?arrow_forward
- The potential energy of an object attached to a spring is 2.40 J at a location where the kinetic energy is 1.70 J. If the amplitude A of the simple harmonic motion is 20.0 cm, calculate the spring constant k and the magnitude of the largest force Fspring, max that the object experiences.arrow_forwardA block of mass m = 11.54 kg on a rough horizontal surface is attached to a light spring with spring/force constant k = 2.17 kN/m with the other end fixed. The block is pulled xi = 7.66 cm to the right from the equilibrium point and released from the rest. The coefficient of kinetic friction between the block and the rough horizontal surface is μk = 0.2. When the block passes through the equilibrium point, what is the velocity of the block vf in m/s? Keep three significant figures for the answer. g = 9.80 m/s2.arrow_forwardThe potential energy of an object attached to a spring is 2.70 J at a location where the kinetic energy is 1.60 J. If the amplitude ? of the simple harmonic motion is 17.0 cm, calculate the spring constant ? and the magnitude of the largest force ? spring,max that the object experiences.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON