College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
What would be the final temperature of the pan and water in Calculating the Final Temperature When
0.0100 kg of the water evaporated immediately, leaving the remainder to come to a common temperature with the pan?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The number of kilocalories in food is determined by calorimetry techniques in which the food is burned and the amount of heat transfer is measured. How many kilocalories per gram are there in a 5.00-g peanut if the energy from burning it is transferred to 0.500 kg of water held in a 0.100-kg aluminum cup, causing a 54.9°C temperature increase?arrow_forwardAn aluminum cup with mass 0.56 kg holds 0.96 kg of water. Both the cup and the water have a temperature of 10.°C. If a 0.76-kg piece of copper at 53.°C is added to the cup, what is the final equilibrium temperature in °C? You may assume that the cup, water, and copper are well insulated from anything else.arrow_forwardArelyz and Hyeonggyun drop a 378.0-g piece of metal at 100.0°C into 447.0 g of water at 20.0°C. The final temperature of the system is measured to be 50.0°C. What is the specific heat of the metal in J/kgK, assuming no heat is exchanged with the surroundings or the cup containing the water? The specific heat of water is 4190 J/(kg K).arrow_forward
- Estimate the temperature change you expect in this air. Let the volume of your room be 38 m3. Heat capacity of air is 1000 J/kg⋅∘C.arrow_forwardA heavy pot made of copper has a mass of 2.24 kg (including the lid) and is heated in an oven to a temperature of 154 °C. You pour 0.12 kg of water at 26.0 °C into the pot and quickly close the lid so that no steam can escape. We assume that no heat is lost to the surrounding. For copper, Ccopper 390 J/(kg.K) For water, Cwater 4190 J/(kg.K), L, = 2256 kJ/kg, L; = 333 kJ/kg. %3D What is the final mass of steam in the pot? onarrow_forwardLatent heat from steam to water is 2260000 and from to water is 333000arrow_forward
- A student obtains the following data in a calorimetry experiment designed to measure the specific heat of aluminum. Initial temperature of water and calorimeter 70.3°C Mass of water 0.402 kg Mass of calorimeter 0.04 kg Specific heat of calorimeter 0.60 kJ/kg.°C Initial temperature of aluminum Mass of aluminum Final temperature of mixture (a) Use these data to determine the specific heat of aluminum. J/kg. °C (b) Is your result within 15% of 900 J/kg . °C? Yes No Need Help? 26.8°C 0.199 kg 66.4°C Read Itarrow_forwardThe "steam" above a freshly made cup of instant coffee is really water vapor droplets condensing after evaporating from the hot coffee. What is the final temperature of 205 g of hot coffee initially at 98.0°C if 3.18 g evaporates from it? The coffee is in a Styrofoam cup, and so other methods of heat transfer can be neglected. Assume that coffee has the same physical properties as water; its latent heat of vaporization is 539 kcal/kg and its specific heat is 1.00 kcal/(kg · °C).arrow_forwardA dog loses a lot of heat by panting. The air rushing over the upper respiratory tract causes evaporation and thus heat loss. A dog typically pants pants at a rate of around 304 pants per minute. As a rough calculation, assume that one pant causes 0.0400 g of water to be evaporated from the respiratory tract. What is the rate of heat loss for the dog by panting? The heat of vaporization for water is 2256 kJ/kg.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON