Question
What provides the main support against the inward force of gravity in a main sequence star?
What provides support against gravitational contraction in a white dwarf? Explain briefly the
physical origins of the different processes. Provide a brief explanation of why there is a critical
mass for a white dwarf (the Chandrasekhar limit), above which it will collapse to form a neutron
star.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps
Knowledge Booster
Similar questions
- A supernova’s energy is often compared to the total energy output of the Sun over its lifetime. Using the Sun’s current luminosity, calculate the total solar energy output, assuming a 1010 year main-sequence lifetime. Using Einstein’s formula E=mc2 calculate the equivalent amount of mass, expressed in Earth masses. [Hint: The total energy output of the Sun over its lifetime is given by its current luminosity times the number of seconds in a year times its ten billion-year lifetime; ; mass of earth = 6×1024kg; c = 3×108m/s. Your answer should be 200-300 Earth masses.]arrow_forwardWhat is the escape velocity (in km/s) from the surface of 1.1 M neutron star? (hint: Use the formula for the escape velocity Ve = 2GM/R ; make sure to express quantities in United of meters, kilograms, and seconds. Assume a neutron has a radius of 11 km and assume the mass of the sun is 1.99 x10^30 kg.) 1.1 M neutron Star = _________ km/s 3.0 neutron Star = __________ km/sarrow_forwardIf a neutron star has a radius of 15 km and a temperature of 7.5 x 106 K, how luminous is it? Express your answer in watts and also in solar luminosity units. (Hint: Use the relation Use 5,800 K for the surface temperature of the Sun. The luminosity of the Sun is 3.83 × 1026 w.) luminosity in watts luminosity in solar luminosity units Loarrow_forward
- Do this in 10 min. I will give like on answerarrow_forwardHow often can a star go supernova? Group of answer choices Many times, depending on the size of its companion star. Twice, the first time when it runs out hydrogen, and the second time when it runs out of iron. Once, early in its evolution. Once, late in its evolution. At various times, depending on the composition of the star.arrow_forward1: Briefly explain what are neutron stars and then estimate the escape velocity of a neutron star.arrow_forward
- Identify the location in the H-R diagram of the phases of stellar evolution. (For each statement select the proper symbol in the picture.) 1) red giant, helium flash2) white dwarf3) red giant with helium burning shell4) hydrogen fusion in shell around core5) helium fusion in core6) envelope ejected, planetary nebula7) main-sequence star8) helium used up, core collapses9) hydrogen used up, core collapsesarrow_forwardWhich of the following most correctly explains why we have not yet observed any white dwarfs derived from M stars: Group of answer choices Most M stars end up as neutron stars or black holes. The lifetime of M stars is longer than the age of the universe. Most M stars are located near the edge of the universe, beyond the visible horizon. Most M stars are members of a binary system, and the white dwarf would be obscured by the glare of the more massive companion. White dwarfs are too dim to be observed with currently available techniques.arrow_forwardWhat is the escape velocity (in km/s) from the surface of a 1.1 M neutron star? From a 3.0 M neutron star?arrow_forward
- Skeleton Densities. Part A: Create a ratio the neutron star density (ρns = 1015 g/cm3) to the white dwarf density (ρwd = 2×106 g/cm3). Please round your answer to one significant digit. Part B: Which stellar property results in electron degeneracy pressure supporting white dwarfs and neutron degeneracy pressure supporting neutron stars?arrow_forwardWhich of the following is the most reasonable statement regarding a neutron star? Group of answer choices It consists mostly or entirely of neutrinos. The most common component of a neutron star is hydrogen. The star will turn into white dwarf. All its electrons have been combined with protons. It consists of neutrons and protons floating in a sea of electrons.arrow_forwardIf a circular accretion disk around a 1.4 M, neutron star has a radius of 1.00 x 105 km as measured from the center of the neutron star to the edge of the disk, what is the orbital velocity (in km/s) of a gas particle located at its outer edge? (The mass of the Sun is GM 1.99 x 1030 kg. Hint: Use the circular orbit velocity formula, V, = ; make sure to express quantities in units of meters, kilograms, and seconds.) km/sarrow_forward
arrow_back_ios
arrow_forward_ios