College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
An ideal gas is taken around a 3 state cycle abc. Process ab is isochoric, process bc can be isothermal or adiabatic and process ca is isobaric. States a and b are at fixed pressure and volume.
Process c is done at a fixed pressure but can change volume depending on if b to c is done adiabatically or isothermally.
What is the relation between the work done for this cycle if b->c is an adiabat vs if b->c is an isotherm?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problem 5: Suppose a Carnot engine has an efficiency of 45 % and a cold reservoir temperature of 28.5°C. Part (a) What is the hot reservoir temperature, in degrees Celsius, of this Carnot engine? Part (b) What must the hot reservoir temperature be, in degrees Celsius, for a real heat engine that has an efficiency of 45, which is 70% of the maximum efficiency? Assume it has the same cold reservoir, at 28.5°C.arrow_forwardConsider the following thermodynamic cycle for an ideal gas: From A to B the gas is compressed adiabatically. From B to C heat Qh is added to the gas and the gas is kept at constant volume. From C to D the gas expands adiabatically. From D to A the gas ejects heat Q₁ to the environment and is kept at constant volume. (1) Draw the PV-diagram associated to this cycle. (2) Show that the efficiency of an engine running this cycle is given by e = 1 - (3) Calculate the efficiency for a compression ratio VA/VB = 8 assuming a diatomic gas. [Hint: for a diatomic gas Cv = (5/2)R.]arrow_forwardConsider a process that uses n moles of a monatomic ideal gas operating through a Carnot cycle. The initial temperature and pressure of the gas are T1 and P1, respectively. Consider steps 1 → 2, 2 → 3, 3 → 4, and 4 → 1. a. In the adiabatic heating, the temperature of the gas is doubled. Write an expression for the volume V3 after this step in terms of V1. b. Write an expression for the volume V4 in terms of V1.arrow_forward
- One mole of an ideal gas is used as the working substance of an engine operating in the cycle shown in the figure below. BC and DA processes are reversible adiabatic.a) Is the gas monoatomic, diatomic or triatomic?b) What is the efficiency and engine?arrow_forwardA monatomic gas is take through a cycle from A to B to C and back to A. At A the pressure is 100,000 pa, the volume is 4.0 liters, and the temperature is 300K. The gas is compressed adiabatically until the volume is 1.0 liters (at B). How much energy was given to or removed from the gas during the adiabatic process?arrow_forwardA certain gasoline engine is modeled as a monatomic ideal gas undergoing an Otto cycle, represented by the p-V diagram shown in the figure. The initial pressure, volume, and temperature are p1 = 1.05 × 105 Pa, V1 = 0.035 m3, and T1 = 290 K, respectively. a)The first step in the Otto cycle is adiabatic compression. Enter an expression for the work performed on the gas during the first step, in terms of V1, V2, and p1. b) Calculate the temperature of the gas, in kelvins, at the end of the first step. c)The fourth and last step in the Otto cycle is isochoric cooling to the initial conditions. Find the amount of heat, in joules, that is discharged by the gas during the fourth step.arrow_forward
- Suppose a heat engine design makes a square on a PV diagram, using a monatomic gas. The high pressure is 3P and low pressure is P. The high volume is 3V and low volume is V. What is the efficiency of the heat engine?arrow_forwardIn one cycle a heat engine absorbs 520 J from a high-temperature reservoir and expels 310 J to a low-temperature reservoir. If the efficiency of this engine is 57% of the efficiency of a Carnot engine, what is the ratio of the low temperature to the high temperature in the Carnot engine? Tlow Thigh =arrow_forwardThe team is playing around with some Carnot cycle numbers. For each transformation, we have the following: (a) Isothermal expansion: 25,338 J (b) Adiabatic expansion: 33,097 J (c) Isothermal compression: 23,182 J (d) Adiabatic compression: 27,995 J Answer the following: 1) Total change in heat within this parcel after one complete cycle. 2) What is the efficiency of the cycle?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON