
MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
What is the purpose of multiple linear regression?
a. |
To assess whether there is a significant difference between independent groups |
|
b. |
To predict scores of an independent variable from scores of a single dependent variable |
|
c. |
To predict scores of a single dependent variable from scores on multiple independent variables |
|
d. |
To predict scores of an independent variable from scores on multiple dependent variables |
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Sir Francis Galton, in the late 1800s, was the first to introduce the statistical concepts of regression and correlation. He studied the relationships between pairs of varlables such as the size of parents and the size of their affspring. Data similar to that which he studied are given below, with the variable x denoting the height (in centimeters) of a human father and the variable y denoting the height at maturity (in centimeters) of the father's oldest son. The data are given in tabular form and also displayed in the Figure 1 scatter plot. Also given is the product of the father's height and the son's helght for each of the fifteen pairs. (These products, written in the column labelled "xy", may aid in calculations.) Height of Height of son, father, x y (in centimeters) centimeters) xy (in 192.7 190.6 36,728.62 174.8 179.2 31,324.16 210 158.5 175.3 27,785.05 200 160.9 167.7 26,982.93 180- 171.6 182.0 31,231.2 172.2 171.1 29,463.42 170 179.9 187.9 33,803.21 181.5 177.5 32,216.25 130_…arrow_forwardThe data in the table represent the number of licensed drivers in various age groups and the number of fatal accidents within the age group by gender. Complete parts (a) through (c) below. Click the icon to view the data table. ..... (a) Find the least-squares regression line for males treating the number of licensed drivers as the explanatory variable, x, and the number of fatal crashes, y, as the response variable. Repeat this procedure for females. Find the least-squares regression line for males. y =x+O %D/ (Round the x coefficient to three decimal places as needed. Round the constant to the nearest integer as needed.) Find the least-squares regression line for females. y = ý =x+O %3D (Round the x coefficient to three decimal places as needed. Round the constant to the nearest integer as needed.) (b) Interpret the slope of the least-squares regression line for each gender, if appropriate. How might an insurance company use this information? What is the correct interpretation of the…arrow_forward. A professor at the University of Alabama was interested in evaluating the relationship between family support and delinquency. Using data collected on 4545 families, the researcher used regression to analyze the relationship. The results are presented below. Variables Entered/Removeda Model Variables Entered Variables Removed Method 1 Family supportb . Enter a. Dependent Variable: Delinquency b. All requested variables entered. Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .249a .062 .062 1.59168 a. Predictors: (Constant), Family support ANOVAa Model Sum of Squares df Mean Square F Sig. 1 Regression 759.204 1 759.204 299.671 <.001b Residual 11479.107 4531 2.533 Total 12238.311 4532 a. Dependent Variable: Delinquency b. Predictors: (Constant), Family support…arrow_forward
- A county real estate appraiser wants to develop a statistical model to predict the appraised value of houses in a section of the county called East Meadow. One of the many variables thought to be an important predictor of appraised value is the number of rooms in the house. Consequently, the appraiser decided to fit the simple linear regression model, y = b₁x + bowhere y = appraised value of the house (in $thousands) and x = number of rooms. Using data collected for a sample of n=74 houses in East Meadow, the following results were obtained: y = 74.80 + 17.80x Give a practical interpretation of the estimate of the slope of the least squares line. For each additional room in the house, we estimate the appraised value to increase $74,800. For each additional dollar of appraised value, we estimate the number of rooms in the house to increase by 17.80 rooms. For a house with O rooms, we estimate the appraised value to be $74,800. For each additional room in the house, we estimate the…arrow_forwardSeven North American Green Frogs (Rana clamitans) had their jumping distance recorded (in mm) multiple times in a laboratory. The mean jumping distance for these frogs along with their length (measured from snout to vent in miMillimeters) are presented in the table below. Length of Frog 52 68 37 65 77 81 59 Mean Jumping Distance 546 673 415 659 793 814 563 (a) Determine the linear regression model that will best predit the mean jumping distance of a North American Green Frog based on the frog's length. (b) How well does the linear regression model fit this sample data? (c) Use the linear regression model to predict the mean jumping distance of a North American Green Frog that is 48 mm in length. No excel, please.arrow_forwardThe systolic blood pressure dataset (in the third sheet of the spreadsheet linked above) contains the systolic blood pressure and age of 30 randomly selected patients in a medical facility. What is the equation for the least square regression line where the independent or predictor variable is age and the dependent or response variable is systolic blood pressure? Y=__________ X + ______________ Patient 7 is 67 years old and has a systolic blood pressure of 170 mm Hg. What is the residual? __________ mm Hg Is the actual value above, below, or on the line? What is the interpretation of the residual? (difference in actual &predicated bp, difference in age, the amount of systolic changes)arrow_forward
- The following sample observations were randomly selected X Y 4 4 5 6 3 5 6 7 10 7 What is the y-intercept of the regression equation?arrow_forwardAnswer the following questions regarding the two variables under consideration in a regression analysis. a. What is the dependent variable called? b. What is the independent variable called? What other name(s) refer(s) to the dependent variable? Select all that apply. outlier explanatory extrapolation least-squares What other name(s) refer(s) to the independent variable? Select all that apply. least-squares predictor extrapolation influential error response predictor influential error response explanatory outlierarrow_forwardYou are a manager at a restaurant and you want to see if there is a relationship between the number of hours your employees work and the number of sales they made. You collect the following data: Employees Hours Worked Sales Made (Y) X2 Laura 6 100 Sarah 8 120 Tim 10 140 Jimmy 12 160 Carter 14 180 Totals determine the correlation coefficient and determine if a statistically significant relationship exists between the two variables. If there is, then they must also supply the linear regression model.arrow_forward
- Consider a linear regression model that relates school expenditures and family background to student performance in Massachusetts using 224 school districts. The response variable is the mean score on the MCAS (Massachusetts Comprehensive Assessment System) exam given in May 1998 to 10th-graders. Four explanatory variables are used: (1) STR is the student-to-teacher ratio, (2) TSAL is the average teacher’s salary, (3) INC is the median household income, and (4) SGL is the percentage of single family households. The Excel Regression output for the sample regression equation is given below. (a) What proportion of the variation in MCAS score is explained by the explanatory variables? (b) At the 5% level, are the explanatory variables jointly significant in explaining MCAS score? Explain briefly. (c) At the 5% level, which variables are individually significant at predicting MCAS score? Explain briefly. (d) Suppose a second regression model (Model 2) was generated using only…arrow_forwardThe manager of the Bayville police department motor pool wants to develop a forecast model for annual maintenance on police cars, based on mileage in the past year and age of the cars. The following data have been collected for eight different cars: a. Using Excel, develop a multiple regression equation for these data. b. What is the coefficient of determination for this regression equation? c. Forecast the annual maintenance cost for a police car that is 5 years old and will be driven 10,000 miles in 1 year.arrow_forwardIs It Getting Harder to Win a Hot Dog Eating Contest?Every Fourth of July, Nathan’s Famous in New York City holds a hot dog eating contest. The table below shows the winning number of hot dogs and buns eaten every year from 2002 to 2015, and the data are also available in HotDogs. The figure below shows the scatterplot with the regression line. Year Hot Dogs 2015 62 2014 61 2013 69 2012 68 2011 62 2010 54 2009 68 2008 59 2007 66 2006 54 2005 49 2004 54 2003 45 2002 50 Winning number of hot dogs in the hot dog eating contest Winning number of hot dogs and buns Click here for the dataset associated with this question. (a) Is the trend in the data mostly positive or negative? Positive Negative (b) Using the figure provided, is the residual larger in 2007 or 2008?Choose the answer from the menu in accordance to item (b) of the question statement 20072008 Is the residual positive or…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman

MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc

Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning

Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning

Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON

The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman