
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
![**Question:**
What is the magnitude of the relativistic momentum of a proton with a relativistic total energy of \(4.0 \times 10^{-10}\) J?
- **Number:** [Input Field]
- **Units:** [Dropdown Menu]
**Additional Resources:**
- eTextbook and Media](https://content.bartleby.com/qna-images/question/f745a03e-4d28-41c8-a106-50fd8814b050/1e3468f6-8461-46ac-b8f8-e95d915ae434/p90ar9_thumbnail.jpeg)
Transcribed Image Text:**Question:**
What is the magnitude of the relativistic momentum of a proton with a relativistic total energy of \(4.0 \times 10^{-10}\) J?
- **Number:** [Input Field]
- **Units:** [Dropdown Menu]
**Additional Resources:**
- eTextbook and Media
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Starting with the definitions of relativistic energy and momentum, show that E2 =P2c2 +m2c4 (Eq. 26.13).arrow_forwardWhat is the speed of an electron whose kinetic energyis 1.12 MeV?arrow_forwarddx 4x 3. In so-called "natural units" (which is just a sneaky way to let us ignore a bunch of constants), the relativistic kinetic energy of a rigid body is given by the formula 1 КЕ — т V1 – v2 where m is the rest mass of the body and v is its relative speed. Alien scientists on a space station are observing an object falling into a black hole. As the object falls, it is disintegrating, losing mass at a rate of 3 (so its mass is changing at a rate of -3). How fast is the kinetic energy of the main part of the object changing when its mass is 20, its velocity is .7, and it is accelerating at a rate of .1 (remember that acceleration is the derivative of velocity with respect to time: a = dt 1Note that this formula does not make sense when v > 1. That is because in natural units, a speed of 1 corresponds to the speed of light, and nothing with positive rest mass can go that fast.arrow_forward
- Compute the kinetic energy of a proton (mass 1.67 x 10-27 kg) using both the nonrelativis- tic and relativistic expressions (a) 8.0 x 107 m/s and (b) 2.858 m/sarrow_forwardConsider a proton that has a momentum of 1.00 kg·m/s. Part (a) Calculate the relativistic parameter γ for the proton. You will have to use a 2.998 × 108 for the speed of light to get this answer correct. Part (b) What is its speed, in meters per second? Such protons form a rare component of cosmic radiation with uncertain origins.arrow_forwardA particle has a rest energy of 4.31×10−13 J and a total energy of 8.33×10−13 J. Calculate the momentum p of the particle.arrow_forward
- An electron is moving with a kinetic energy of 0.923 MeV.What is its speed?arrow_forward10 L Special Relativity predicts that high-energy electrons increase in mass as they approach the speed of light. What kinetic energy will an electron have if it is travelling at 99.875% of the speed of light? Give your answer in MeV and in J. How many times greater is your result than the value the classical formula mv² gives? G AUarrow_forwardAstrophysics 14 Use Newton's second law, F = dp/dt, and the formula for relativistic momentum, Eq. ( 44), to show that the acceleration vector a = dv/dt produced by a force F acting on a particle of mass m is F (F. v), ymc² Ym where F· v is the vector dot product between the force F and the particle velocity v. Thus the acceleration depends on the particle's velocity and is not in general in the same direction as the force. mv p = /1 – v²/c² = ymv (44) VI -arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON