Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
What is the energy ?E required to accelerate a 1645 kg1645 kg car from rest to 27 m/s? Compared to the amount of energy required to accelerate a car from rest to 27 m/s,27 m/s, how much energy is required to accelerate the car from 27 m/s27 m/s to twice that speed, 54 m/s?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle of mass 2.0 kg moves under the influence of the force F(x)=(3/x)N. If its speed at x=2.0 m is v=6.0 m/s, what is its speed at x = 7.0 m?arrow_forward(a) How fast must a 3000-kg elephant move to have the same kinetic energy as a 65.0-kg sprinter running at 10.0 m/s? (b) Discuss how the larger energies needed for the movement of larger animals would relate to metabolic rates.arrow_forwardSuppose a car travels 108 km at a speed of 30.0 m/s, and uses 2.0 gal of gasoline. Only 30 of the gasoline goes into useful work by the force that keeps the car moving at constant speed despite friction. (The energy content of gasoline is about 140 Mi/gal.) (a) What is the magnitude of the force exerted to keep the car moving at constant speed? (b) If the required force is directly proportional to speed, how many gallons will be used to drive 108 km at a speed of 28.0 m/s?arrow_forward
- . In the annual Empire State Building race, contestants run up 1,575 steps to a height of 1,050 ft. In 2003, Australian Paul Crake completed the race in a record time of 9 min and 33 S, Mr., Crake weighed 143 lb (65 kg) , (a) How much work did Mr., Crake do in reaching the top of the building? (b) What was his average power output (in ft-lb/s and in hp)?arrow_forwardA single force F(x)=4.0x (in newtons) acts on a 1.0-kg body. When x=3.5 m, the speed of the body is 4.0 m/s. What is its speed at x = 2.0 m?arrow_forward. At NASA's Zero Gravity Research Facility in Cleveland, Ohio, experimental payloads fall freely from rest in an evacuated vertical shaft through a distance of 132 m, (a) If a particular payload has a mass of 45 kg, what is its potential energy relative to the bottom of the shaft? (b) How fast will the payload be traveling when it reaches the bottom of the shaft? Convert your answer to mph for a comparison to highway speeds.arrow_forward
- Integrated Concepts (a) What force must be supplied by an elevator cable to produce an acceleration of 0.800 m/s2 against a 200-N frictional force, if the mass of the loaded elevator is 1500 kg? (b) How much work is done by the cable in lifting the elevator 20.0 m? (c) What is the final speed of the elevator if it starts from rest? (d) How much work went into thermal energy?arrow_forward. The fastest that a human has run is about 12 m/s. (a) If a pole vaulter could run this fast and convert all of her kinetic energy into gravitational potential energy, how high would she go? (b) Compare this height with the world record in the pole vault.arrow_forwardWhat is the energy E required to accelerate a 1445 kg car from rest to 29 m/s? Compared to the amount of energy required to accelerate a car from rest to 29 m/s, how much energy is required to accelerate the car from 29 m/s to twice that speed, 58 m/s? twice as much O four times as much C he same O three times as much मনarrow_forward
- An 1800-kg car initially travels at 130 km/h and stops over a time of 30 s. During this time the car's height is reduced by 10 m. Assuming that the mass of the car does not change, what is the change in total energy of the car in kJ? Assuming that all of this energy change can be captured, how much power would be produced, in kW? Assume that gravity is 9.81 m/s2.arrow_forwardPlease solve and answer the question correctly. Thank you!arrow_forwardThor stands on the top of stark tower 425 m adn fights his brother loki using mjolnir his hammer. if his hammer has a mass equal to 300 billion elephants cal it 4.5*10^15 kg what i the gaviation potential energy in J of jjolnir relative to the ground? use scientific notation to enter you answer. B. Loki tricks thor into dropping Mjolnir off stark tower. when the hammer has fallen one third of the way down the tower what is its kinetic energy in J? Hint you could find the speed then calculate the kinetic energy but there's an easier way...arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning