College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
What is the electrical force between the proton of a hydrogen atom and the electron of the hydrogen atom if they are 5.9x10-6m apart?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Coulomb's law for the magnitude of the force FFF between two particles with charges QQQ and Q′Q′Q^\prime separated by a distance ddd is |F|=K|QQ′|d2|F|=K|QQ′|d2, where K=14πϵ0K=14πϵ0, and ϵ0=8.854×10−12C2/(N⋅m2)ϵ0=8.854×10−12C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1q1q_1 = -11.5 nCnC , is located at x1x1x_1 = -1.675 mm ; the second charge, q2q2q_2 = 40.0 nCnC , is at the origin (x=0.0000)(x=0.0000). What is the force exerted by these two charges on a third charge q3q3q_3 = 48.0 nCnC placed between q1q1q_1 and q2q2q_2 at x3x3x_3 = -1.215 mm ? Your answer may be positive or negative, depending on the direction of the force. Express your answer numerically in newtons to three significant figures.arrow_forward5 3 Part a and b are correct. I need help with c and d.arrow_forwardA total charge of 4.69 C is distributed on two metal spheres. When the spheres are 10.00 cm apart, they each feel a repulsive force of 4.1*10^11 N. How much charge is on the sphere which has the lower amount of charge?arrow_forward
- The proton-proton chain is the multi-step process that powers the Sun via fusion of hydrogen into helium. In the fırst step of the proton-proton chain, a positron is produced when two protons fuse together (with one proton converting to a neutron). The emitted positron quickly collides with its anti-particle, the electron. (Recall that the electron and positron have exactly the same mass, but opposite electric charges.) The electron and positron then completely annihilate, converting all of their rest mass into two gamma-ray photons. Given a single particle of mass m, the amount of energy E produced when all of its mass is converted to energy is given by Einstein's famous formula, E = m c2, where c = 2.9979 x 108 m/s is the speed of light. We also learned that the energy Ephoton of a single photon is related to its frequency f or wavelength A via Ephoton = hf = he, where h = 6.626 x 10-34 m² kg/s is a fundamental constant of nature called Planck's constant. In the electron + positron…arrow_forwardCoulomb's law for the magnitude of the force FFF between two particles with charges QQQ and Q′Q′Q^\prime separated by a distance ddd is |F|=K|QQ′|d2|F|=K|QQ′|d2, where K=14πϵ0K=14πϵ0, and ϵ0=8.854×10−12C2/(N⋅m2)ϵ0=8.854×10−12C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1q1q_1 = -19.0 nCnC , is located at x1x1x_1 = -1.710 mm ; the second charge, q2q2q_2 = 39.0 nCnC , is at the origin (xx = 0). What is (Fnet3)x , the x-component of the net force exerted by these two charges on a third charge q3 = 46.5 nC placed between q1 and q2 at x3 = -1.245 m ? Your answer may be positive or negative, depending on the direction of the force. Express your answer numerically in newtons to three significant figures.arrow_forwardAn electron and a proton have charges of an equal magnitude but opposite sign of 1.6 × 10 −19 C. If the electron and proton in a hydrogen atom are separated by a distance of 5 × 10^−11 m, what are the magnitude and direction of the electrostatic force exerted on the electron by the proton?arrow_forward
- Two electrons in an atom are separated by 1.6 × 10-10 m, the typical size of an atom. What is the force between them? Coulomb constant is 9 × 10⁹ Nm²/C². Answer in units of N. The T 06arrow_forwardForces in an atom. The particles in the nucleus of an atom are approximately 10- 15 m apart, while the electrons in an atom are about 10- 10 m from the nucleus. (a) Calculate the electrical repulsion between two protons in a nucleus if they are 1.00 x 10- 15 m apart. If you were holding these protons, do you think you could feel the effect of this force? How many pounds would the force be? (b) Calculate the electrical attraction that a proton in a nucleus exerts on an orbiting electron if the two particles are 1.00 x 10- 10 m apart. If you were holding the electron, do you think you could feel the effect of this force?arrow_forwardAn electron and a proton are separated by a distance of 1.9 x 10-10 m (roughly the diameter of a single atom). The masses of the electron and proton are me = 9.11 x 10- kg and 1.673 × 10-2' kg, respectively. The elementary charge mp e = 1.602 x 10-19 C. The universal gravitational constant G = 6.67 x 10 N-m²/kg² and the coulomb constant k = 8.988 × 10° N-m²/C2. What is the magnitude F, of the electric force between the electron and the proton? Fe= N. What is the magnitude F, of the gravitational force between the electron and the proton? Fg In this scenario, how many times stronger is the electric force than the gravitational force? Fe Fg about us privacy policy terms of use contact us help careers || %3Darrow_forward
- The magnitude of the electrostatic force between two identical ions that are separated by a distance of 7.70 × 10-10 m is 423.9 × 10-⁹ N. (a) What is the charge of each ion? (b) How many electrons are "missing" from each ion (thus giving the ion its charge imbalance)?arrow_forwardTwo electric charges of q1 = -4.8 nC and q2= 4 nC are separated by 3 cm. What is the Coulomb force between the two charges? How many extra electrons does q1 contain?arrow_forwardTwo charges (Q1=4.9x10-9C and Q2=-6x10-8C) are separated by 0.05m. What is the electrical force between them?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON