Question
- What determines the mass distribution of forming stars, the initial mass function (IMF)?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- If an open cluster contains 350 stars and is 48 pc in diameter, what is the average distance between the stars? On average what, share of the volume of the cluster surrounds each star?arrow_forwardCan you please help with Part 2 of 2? Thank you.arrow_forwardIf a giant molecular cloud is 38 pc in diameter and a shock wave can sweep through it in 6 million years, how fast is the shock wave going in kilometers per second? (Notes: 1 pc = 3.1 1013 km; 1 yr = 3.2 107 s.) answer in km/sarrow_forward
- A supernova’s energy is often compared to the total energy output of the Sun over its lifetime. Using the Sun’s current luminosity, calculate the total solar energy output, assuming a 1010 year main-sequence lifetime. Using Einstein’s formula E=mc2 calculate the equivalent amount of mass, expressed in Earth masses. [Hint: The total energy output of the Sun over its lifetime is given by its current luminosity times the number of seconds in a year times its ten billion-year lifetime; ; mass of earth = 6×1024kg; c = 3×108m/s. Your answer should be 200-300 Earth masses.]arrow_forwardif a star is converted every bit of its mass. into energy the conversion efficiency would be 100%. however no star is this efficient in its energy production stars with less than 1.3 solar masses convert hydrogen into helium with an efficiency of only 0.7%. besring in mind that aldebaram has a mass of 2.32*10^30 kg. how long will it live if it converts all of its hydrogen into helium with an efficiency of 0.7%. 1 year = 365.25 days. lifetime= yearsarrow_forwardMatch each statement with the appropriate item (if the first corresponds to B and the next 4 to C, enter BCCCC) 1) group of stars that was formed all at the same time, with the same composition 2) the top of the main sequence of a cluster; more massive stars in the cluster have already evolved 3) globular clusters stars that are burning helium in their core 4) young, spread out star cluster 5) old, dense star cluster A. main sequence turnoff B. open cluster C. star cluster D. horizontal branch stars E. globular clusterarrow_forward
- Describe each of the following in detail, indicating their respective origins and the differences between them: Nova, Supernova type 1, Supernova type II.arrow_forwardHow many years? Thank you!arrow_forwardWhat are the main products of the fusion reactions that take place in low mass main sequence stars?arrow_forward
arrow_back_ios
arrow_forward_ios