
MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
We use the form = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from Climatology Report No. 77-3 of the Department of Atmospheric Science, Colorado State University, showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in Colorado locations.
A Minitab printout provides the following information.
Predictor | Coef | SE Coef | T | P |
Constant | 318.24 | 28.31 | 11.24 | 0.002 |
Elevation | -30.327 | 3.511 | -8.79 | 0.003 |
S = 11.8603 | R-Sq = 95.8% |
Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation = a + bx.
(a) Use the printout to write the least-squares equation.
y^= | ?+? x |
(b) For each 1000-foot increase in elevation, how many fewer frost-free days are predicted? (Use 3 decimal places.)
(c) The printout gives the value of the coefficient of determination r2. What is the value of r? Be sure to give the correct sign for r based on the sign of b. (Use 3 decimal places.)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- We use the form ŷ = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from a report showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in a state. A Minitab printout provides the following information. Predictor Coef SE Coef T P Constant 315.27 28.31 11.24 0.002 Elevation -31.812 3.511 -8.79 0.003 S = 11.8603 R-Sq = 96.8% Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation ŷ = a + bx. (a) Use the printout to write the least-squares equation. ŷ = + x (b) For each 1000-foot increase in elevation,…arrow_forwardReport the equation of the regression line and interpret it in the context of the problemarrow_forwardWe use the form ŷ = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from a report showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in a state. A Minitab printout provides the following information. Predictor Coef SE Coef T P Constant 316.08 28.31 11.24 0.002 Elevation -31.974 3.511 -8.79 0.003 S = 11.8603 R-Sq = 97.8% Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation ŷ = a + bx. (a) Use the printout to write the least-squares equation. ŷ = 316.08 +-31.974x For each 1000-foot increase in…arrow_forward
- We use the form ŷ = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from a report showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in a state. A Minitab printout provides the following information. Predictor Coef SE Coef T P Constant 316.62 28.31 11.24 0.002 Elevation -30.516 3.511 -8.79 0.003 S = 11.8603 R-Sq = 96.2% The printout gives the value of the coefficient of determination r2. What is the value of r? Be sure to give the correct sign for r based on the sign of b. (Round your answer to four decimal places.) What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares…arrow_forwardWe use the form ŷ = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from a report showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in a state. A Minitab printout provides the following information. Predictor Coef SE Coef T. Constant 317.97 28.31 11.24 0.002 Elevation -28.572 3.511 -8.79 0.003 S = 11.8603 R-Sq 94.2% %3D Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation ŷ = a + bx. (a) Use the printout to write the least-squares equation. %3D (b) For each 1000-foot increase in elevation, how many fewer frost-free days are…arrow_forwardWe use the form ŷ = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from a report showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in a state. A Minitab printout provides the following information. Predictor Сoef SE Coef T Constant 317.43 28.31 11.24 0.002 Elevation -31.272 3.511 -8.79 0.003 S = 11.8603 R-Sq = 96.2% Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation ŷ = a + bx. (a) Use the printout to write the least-squares equation. ŷ = 317.43 -31.272 (b) For each 1000-foot increase in elevation, how many fewer…arrow_forward
- The following table shows the length, in centimeters, of the humerus and the total wingspan, in centimeters, of several pterosaurs, which are extinct flying reptiles. (A graphing calculator is recommended.) (a) Find the equation of the least-squares regression line for the data. (Where × is the independent variable.) Round constants to the nearest hundredth. y= ? (b) Use the equation from part (a) to determine, to the nearest centimeter, the projected wingspan of a pterosaur if its humerus is 52 centimeters. ? cmarrow_forwardThe height (sidewalk to roof) of notable tall buildings in America is compared to the number of stories of the building (beginning at street level). Stories (x) Height (y) 59 1050 29 428 25 362 40 529 60 790 22 401 38 380 110 1454 100 1127 46 700 Calculate the least squares line. Put the equation in the form of: y = a + bx. (Round your answers to three decimal places.) ŷ = + Xarrow_forwardWe use the form ŷ = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from a report showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in a state. A Minitab printout provides the following information. Predictor Сoef SE Coef T Constant 315.81 28.31 11.24 0.002 Elevation -31.650 3.511 -8.79 0.003 S = 11.8603 R-Sq = 94.6% Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation ŷ = a + bx. (a) Use the printout to write the least-squares equation. ŷ : + %| (b) For each 1000-foot increase in elevation, how many fewer frost-free days…arrow_forward
- The mtcars data set contains data on 32 cars from the 1974 Motor Trend US magazine. The data set has 11 variables that measure different aspects of the cars, such as miles per gallon (mpg), horsepower (hp), weight (wt), and number of cylinders (cyl). The data set can be used to study the relationship between fuel consumption and car performance, as well as other factors that affect the efficiency and design of the cars. What is the maximum and minimum number of the range regarding the explanatory variable for which the regression model can make valid predictions?arrow_forwardPlease help me better understand how to solve this word problem. In a study of 2000 model cars, a researcher computed the least-squares regression line of price (in collars) on horsepower. He obtained the following equation of: Price = -7000 + 170 X horsepower. Based on the least-squares regression line, what would we predict the cost of a 2000 model car with horsepower equal to 230 to be (assuming no extrapolation error)?arrow_forwardWe use the form ý = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from a report showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in a state. %3D A Minitab printout provides the following information. Predictor Сoef SE Coef P Constant 315.54 28.31 11.24 0.002 Elevation -28.950 3.511 -8.79 0.003 S = 11.8603 R-Sq = 96.2% Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation ŷ = a + bx. (a) Use the printout to write the least-squares equation. = 315.54 X x (b) For each 1000-foot increase in elevation, how many fewer frost-free…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman

MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc

Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning

Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning

Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON

The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman