We stated that the number 561 is a Carmichael number, but we never checked that a561 ≡ a (mod 561) for every value of a. (a) The number 561 factors as 3 · 11 · 17. First use Fermat’s little theorem to prove that a561 ≡ a (mod 3), a561 ≡ a (mod 11), and a561 ≡ a (mod 17) for every value of a. Then explain why these three congruences imply that a561 ≡ a (mod 561) for every value of a. (b) Mimic the idea used in (a) to prove that each of the following numbers is a Carmichael number. (To assist you, we have factored each number into primes.) (i) 1729 = 7 · 13 · 19 (ii) 10585 = 5 · 29 · 73 (iii) 75361 = 11 · 13 · 17 · 31
We stated that the number 561 is a Carmichael number, but we never checked that a561 ≡ a (mod 561) for every value of a. (a) The number 561 factors as 3 · 11 · 17. First use Fermat’s little theorem to prove that a561 ≡ a (mod 3), a561 ≡ a (mod 11), and a561 ≡ a (mod 17) for every value of a. Then explain why these three congruences imply that a561 ≡ a (mod 561) for every value of a. (b) Mimic the idea used in (a) to prove that each of the following numbers is a Carmichael number. (To assist you, we have factored each number into primes.) (i) 1729 = 7 · 13 · 19 (ii) 10585 = 5 · 29 · 73 (iii) 75361 = 11 · 13 · 17 · 31
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
We stated that the number 561 is a Carmichael number, but we never checked that a561 ≡ a (mod 561) for every value of a.
(a) The number 561 factors as 3 · 11 · 17. First use Fermat’s little theorem to prove that
a561 ≡ a (mod 3), a561 ≡ a (mod 11), and a561 ≡ a (mod 17)
for every value of a. Then explain why these three congruences imply that a561 ≡ a (mod 561) for every value of a.
(b) Mimic the idea used in (a) to prove that each of the following numbers is a
Carmichael number. (To assist you, we have factored each number into primes.)
(i) 1729 = 7 · 13 · 19
(ii) 10585 = 5 · 29 · 73
(iii) 75361 = 11 · 13 · 17 · 31
(iv) 1024651 = 19 · 199 · 271
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,