We consider the following 27-periodic function f given by S0, if -n < x < 0, lx, if 0 1. 3- Deduce the Real Fourier Series associated to the function f.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
We consider the following 2T-periodic function f given by
(0, if -T < x <0,
lx, if
f(x) =
0 < x < T.
1- Determine the Complex Fourier Series associated to the function f.
Hint : Use the fact that
(ах — 1)
xear
-eda + C, where C is constant.
а?
2- Deduce ao, an and bn for n > 1.
3- Deduce the Real Fourier Series associated to the function f.
4- Use Perseval's equality in order to show that :
1
+
1
(-1)n+1
57?
2n2
Tn²
48
n=1
n=1
n=1
Hint : Use the fact that
73
%3D
Transcribed Image Text:We consider the following 2T-periodic function f given by (0, if -T < x <0, lx, if f(x) = 0 < x < T. 1- Determine the Complex Fourier Series associated to the function f. Hint : Use the fact that (ах — 1) xear -eda + C, where C is constant. а? 2- Deduce ao, an and bn for n > 1. 3- Deduce the Real Fourier Series associated to the function f. 4- Use Perseval's equality in order to show that : 1 + 1 (-1)n+1 57? 2n2 Tn² 48 n=1 n=1 n=1 Hint : Use the fact that 73 %3D
F[sin(at)] = in (8(w + a) – 8(w – a)
F[8(1)] = 1
sin(at) = inF" (6(w+ a) – 6(w - a)].
8(t) = F='(1]
%3D
iw
F(cos(at)H(1)] =, (8(w + a) + 8(w – a)) +
a2
%3D
w2
= 278(W – b)
iw
cos(at)H(t) = F-1
(8(w + a) + 8(w – a)) +
a2
w2
= 27F'(ô(w – b)]
a
F[sin(at)H(t)] =
(8(w + a) – 8(w - a).
%3D
a – w2
F[cos(at)] = (8(w + a) + 8(W – a))
%3D
in
(8(W + a) – 8(W – a) +
a
sin(at)H(t) = F1
%3D
a2
w2
cos(at) = xF' [8(w + a) + 8(w – a)] .
Page 3
1
b+ iw
F(0-b" cos(an)H()] =
%3D
b>0
a+ iw
(b + iw)2 + a2
n!
a> 0, ne
(a + iwy
b+ iw
e-aH(1) = F-1
a+ iw
e
- b' cos(at)H(t) = F-
%3D
|(b+iw)2 + a²
n!
t"e-"H(1) = F=1|
a
(a+ iw)n-1
Fo-b" sin(at)H(t)
b>o F e" H(-1) :
%3D
%3D
a >0
(b.
+ iw)2 + a2
a - iw
a
sin(at)H(t) = F-1
e" H(-t) = F-1
iw
%3D
(b+ iw)2 + a
Transcribed Image Text:F[sin(at)] = in (8(w + a) – 8(w – a) F[8(1)] = 1 sin(at) = inF" (6(w+ a) – 6(w - a)]. 8(t) = F='(1] %3D iw F(cos(at)H(1)] =, (8(w + a) + 8(w – a)) + a2 %3D w2 = 278(W – b) iw cos(at)H(t) = F-1 (8(w + a) + 8(w – a)) + a2 w2 = 27F'(ô(w – b)] a F[sin(at)H(t)] = (8(w + a) – 8(w - a). %3D a – w2 F[cos(at)] = (8(w + a) + 8(W – a)) %3D in (8(W + a) – 8(W – a) + a sin(at)H(t) = F1 %3D a2 w2 cos(at) = xF' [8(w + a) + 8(w – a)] . Page 3 1 b+ iw F(0-b" cos(an)H()] = %3D b>0 a+ iw (b + iw)2 + a2 n! a> 0, ne (a + iwy b+ iw e-aH(1) = F-1 a+ iw e - b' cos(at)H(t) = F- %3D |(b+iw)2 + a² n! t"e-"H(1) = F=1| a (a+ iw)n-1 Fo-b" sin(at)H(t) b>o F e" H(-1) : %3D %3D a >0 (b. + iw)2 + a2 a - iw a sin(at)H(t) = F-1 e" H(-t) = F-1 iw %3D (b+ iw)2 + a
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Fourier Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,