We can use the cross product to describe an area. Usually one thinks of area in terms of magnitude only. However, many applications in physics require that we also specify the orientation of the area. For example, if we wish to calculate the rate at which water in a stream flows through a wire loop of given area, it obviously makes a difference whether the plane of the loop is perpendicular or parallel to the flow. (If parallel, the flow through the loop is zero.) Here is how the vector product accomplishes this:

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter2: Vectors
Section: Chapter Questions
Problem 2.15CYU: Check Your Understanding For the vectors given in Figure 2.13, find the scalar products AB and CF ....
icon
Related questions
Question
VECTORS AND KINEMATICS
Example 1.4 Area as a Vector
We can use the cross product to describe an area. Usually one thinks
of area in terms of magnitude only. However, many applications in
physics require that we also specify the orientation of the area. For
example, if we wish to calculate the rate at which water in a stream
flows through a wire loop of given area, it obviously makes a difference
whether the plane of the loop is perpendicular or parallel to the flow.
(If parallel, the flow through the loop is zero.) Here is how the vector
product accomplishes this:
Consider the area of a quadrilateral formed by two vectors C and D.
The area A of the parallelogram is given by
A
base'x height
Transcribed Image Text:VECTORS AND KINEMATICS Example 1.4 Area as a Vector We can use the cross product to describe an area. Usually one thinks of area in terms of magnitude only. However, many applications in physics require that we also specify the orientation of the area. For example, if we wish to calculate the rate at which water in a stream flows through a wire loop of given area, it obviously makes a difference whether the plane of the loop is perpendicular or parallel to the flow. (If parallel, the flow through the loop is zero.) Here is how the vector product accomplishes this: Consider the area of a quadrilateral formed by two vectors C and D. The area A of the parallelogram is given by A base'x height
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Variation of pressure
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning