Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters the turbine at 12 MPa, 440°C, and the condenser pressure is 8 kPa. Steam expands through the first-stage turbine to 1.2 MPa and then is reheated to 480°C. Assume the pump and each turbine stage has an isentropic efficiency of 85% and 92%, respectively. Determine for the cycle:
(a) the rate of heat addition, in kJ per kg of steam entering the first-stage turbine.
(b) the thermal efficiency.
(c) the rate of heat transfer from the working fluid passing through the condenser to the cooling water, in kJ per kg of steam entering the first-stage turbine.
(d) the back work ratio.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Similar questions
- Consider a steam power plant operating on the ideal Rankine cycle. Steam enters the turbine at 3 MPa and 350°C and is condensed in the condenser at a pressure of 10 kPa. Determinearrow_forwardCompare the thermal efficiency and turbine-exit quality (temperature if superheated) at the condenser pressure for a simple Rankine cycle and the reheat cycle when the boiler pressure is 5 MPa, the boiler exit temperature is 500°C, and the condenser pressure is 20 kPa. The reheat takes place at 0.5 MPa and the steam leaves the reheater at 500°C. (Enthalpies are in KJ/kg.) Without the reheater, the heat added is: The enthalpy entering the condenser is: The net Work is: The enthalpy entering the reheater is: Without the reheater, the net Work is:arrow_forwardAn ideal Rankine cycle operates between a steam boiler pressure of 18 MPa and a condenser temperature of 42 °C. The steam leaving the boiler is a saturated vapor. The net power generated by the cycle is 150 MW. What is the mass flow rate of steam? What is the cycle efficiency? Use the formula: n=Wnet/Qin.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY