Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN: 9780134463216
Author: Robert F. Blitzer
Publisher: PEARSON
Bartleby Related Questions Icon

Related questions

Question
2
**Verify the Identity**

\[ \csc \theta \cdot \cos \theta \cdot \tan \theta = 1 \]

Which of the following four statements establishes the identity?

- **A.** \(\csc \theta \cdot \cos \theta \cdot \tan \theta = \frac{1}{\cos \theta} \cdot \cos \theta \cdot \frac{\cos \theta}{\sin \theta} = 1\)

- **B.** \(\csc \theta \cdot \cos \theta \cdot \tan \theta = \frac{1}{\sin \theta} \cdot \cos \theta \cdot \frac{\sin \theta}{\cos \theta} = 1\)

- **C.** \(\csc \theta \cdot \cos \theta \cdot \tan \theta = \frac{1}{\cos \theta} \cdot \cos \theta \cdot \frac{\sin \theta}{\cos \theta} = 1\)

- **D.** \(\csc \theta \cdot \cos \theta \cdot \tan \theta = \frac{1}{\sin \theta} \cdot \cos \theta \cdot \frac{\cos \theta}{\sin \theta} = 1\)

Explanation:
- The expression given involves verifying the identity \(\csc \theta \cdot \cos \theta \cdot \tan \theta = 1\) through substitution and simplification of trigonometric functions.
- Options A, B, C, and D represent different approaches to establish that identity using trigonometric identities and simplifications, such as expressing \(\csc\), \(\cos\), and \(\tan\) in terms of \(\sin\) and \(\cos\) and simplifying the resulting expressions.
expand button
Transcribed Image Text:**Verify the Identity** \[ \csc \theta \cdot \cos \theta \cdot \tan \theta = 1 \] Which of the following four statements establishes the identity? - **A.** \(\csc \theta \cdot \cos \theta \cdot \tan \theta = \frac{1}{\cos \theta} \cdot \cos \theta \cdot \frac{\cos \theta}{\sin \theta} = 1\) - **B.** \(\csc \theta \cdot \cos \theta \cdot \tan \theta = \frac{1}{\sin \theta} \cdot \cos \theta \cdot \frac{\sin \theta}{\cos \theta} = 1\) - **C.** \(\csc \theta \cdot \cos \theta \cdot \tan \theta = \frac{1}{\cos \theta} \cdot \cos \theta \cdot \frac{\sin \theta}{\cos \theta} = 1\) - **D.** \(\csc \theta \cdot \cos \theta \cdot \tan \theta = \frac{1}{\sin \theta} \cdot \cos \theta \cdot \frac{\cos \theta}{\sin \theta} = 1\) Explanation: - The expression given involves verifying the identity \(\csc \theta \cdot \cos \theta \cdot \tan \theta = 1\) through substitution and simplification of trigonometric functions. - Options A, B, C, and D represent different approaches to establish that identity using trigonometric identities and simplifications, such as expressing \(\csc\), \(\cos\), and \(\tan\) in terms of \(\sin\) and \(\cos\) and simplifying the resulting expressions.
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:PEARSON
Text book image
Contemporary Abstract Algebra
Algebra
ISBN:9781305657960
Author:Joseph Gallian
Publisher:Cengage Learning
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:9780135163078
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:9780980232776
Author:Gilbert Strang
Publisher:Wellesley-Cambridge Press
Text book image
College Algebra (Collegiate Math)
Algebra
ISBN:9780077836344
Author:Julie Miller, Donna Gerken
Publisher:McGraw-Hill Education