Trigonometry (11th Edition)
Trigonometry (11th Edition)
11th Edition
ISBN: 9780134217437
Author: Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher: PEARSON
Bartleby Related Questions Icon

Related questions

Question
100%
**Trigonometric Identity Verification**

**Objective:**
Verify the identity by converting the left side into sines and cosines. (Simplify at each step.)

**Given Identity:**
\[ \cot(x) - \tan(x) = \sec(x)(\csc(x) - 2 \sin(x)) \]

### Step-by-Step Verification:

1. **Express \(\cot(x)\) and \(\tan(x)\) in terms of sine and cosine:**
   \[\cot(x) - \tan(x) = \frac{\cos(x)}{\sin(x)} - \frac{\sin(x)}{\cos(x)}\]

2. **Find a common denominator:**
   \[ \frac{\cos^2(x) - \sin^2(x)}{\sin(x)\cos(x)} \]

3. **Simplify using the Pythagorean identity \(\cos^2(x) + \sin^2(x) = 1\):**

   \[ \cos^2(x) - \sin^2(x) = \cos(x) (\cos(x)) - \sin^2(x) \]
   
   Substitution leads to:
   \[ = \sin(x) \left( \cos(x) \right)  \]

   \[ = \frac{1 - (\sin^2(x) + \sin^2(x))}{\sin(x) \cos(x)}  \]
   
   This simplifies to:
   \[ \frac{1 - 2\sin^2(x)}{\sin(x) \cos(x)} \]

4. **Separate the expression into:**
   \[ \frac{1}{\cos(x)} \cdot \frac{1 - 2 \sin^2(x)}{\sin(x)} \]

5. **Break it down further:**
   \[ \sec(x) \left( \frac{1 - 2\sin^2(x)}{\sin(x)} \right) \]

6. **Notice the resemblance to the given identity:**
   \[ \sec(x) \left( \csc(x) - 2 \sin(x) \right) \]

### Verification Complete:
\[
\cot(x) - \tan(x) = \sec(x) \left( \csc(x) - 2 \sin(x) \right)
\]

### Explanation of Incorrect Steps:
- In
expand button
Transcribed Image Text:**Trigonometric Identity Verification** **Objective:** Verify the identity by converting the left side into sines and cosines. (Simplify at each step.) **Given Identity:** \[ \cot(x) - \tan(x) = \sec(x)(\csc(x) - 2 \sin(x)) \] ### Step-by-Step Verification: 1. **Express \(\cot(x)\) and \(\tan(x)\) in terms of sine and cosine:** \[\cot(x) - \tan(x) = \frac{\cos(x)}{\sin(x)} - \frac{\sin(x)}{\cos(x)}\] 2. **Find a common denominator:** \[ \frac{\cos^2(x) - \sin^2(x)}{\sin(x)\cos(x)} \] 3. **Simplify using the Pythagorean identity \(\cos^2(x) + \sin^2(x) = 1\):** \[ \cos^2(x) - \sin^2(x) = \cos(x) (\cos(x)) - \sin^2(x) \] Substitution leads to: \[ = \sin(x) \left( \cos(x) \right) \] \[ = \frac{1 - (\sin^2(x) + \sin^2(x))}{\sin(x) \cos(x)} \] This simplifies to: \[ \frac{1 - 2\sin^2(x)}{\sin(x) \cos(x)} \] 4. **Separate the expression into:** \[ \frac{1}{\cos(x)} \cdot \frac{1 - 2 \sin^2(x)}{\sin(x)} \] 5. **Break it down further:** \[ \sec(x) \left( \frac{1 - 2\sin^2(x)}{\sin(x)} \right) \] 6. **Notice the resemblance to the given identity:** \[ \sec(x) \left( \csc(x) - 2 \sin(x) \right) \] ### Verification Complete: \[ \cot(x) - \tan(x) = \sec(x) \left( \csc(x) - 2 \sin(x) \right) \] ### Explanation of Incorrect Steps: - In
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Trigonometry (11th Edition)
Trigonometry
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:PEARSON
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Text book image
Algebra and Trigonometry
Trigonometry
ISBN:9781938168376
Author:Jay Abramson
Publisher:OpenStax
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning