Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 5 steps with 4 images
Knowledge Booster
Similar questions
- (4) Electronic energy level of a hydrogen atom is given by R ; п %3D 1,2, 3,... n2 E = - and R = 13.6 eV. Each energy level has degeneracy 2n2 (degeneracy is the number of equivalent configurations associated with the energy level). (a) Derive the partition function for a hydrogen atom at a constant temperature. (b) Consider that the energy level of a hydrogen atom is approximated by a two level system, n = 1,2. Estimate the mean energy at 300 K.arrow_forwardAt time t = 0 the wave function of the hydrogen atom is: where we ignore the spin.(a) Calculate the expected value of energy for this system.(b) What is the probability of finding the system at l = 1, m = +1 as a function of time?(c) What is the probability of finding the electron around 10−10 cm from the proton, at t = 0s (canapproximate).(d) Write the time-dependent wave function: ψ (r,t)arrow_forwardA deuterium molecule (D2₂) at 30°K is known to be in the state, 1 /26 12/₂) = = |3|1, 1) + 4 |7, 3) + |7, 1) where , m) are eigenstates of the angular momentum operator. (a) If one were to measure L₂, what posible values one would get and what would be their associated probabilities? (b) Repeat (a) but for L². (c) What is the expectation value of the energy (E) of the molecule in this state, assuming purely rotational states. Take c= 30.4 cm-¹, where I=moment of inertia of D₂ and c=speed of light. Express your answer in eV. -arrow_forward
- Suppose you measure the angular momentum in the z-direction L, for an /= 2 hydrogen atom in the state | > 2 > |0 > +i/ |2 >. The eigenvalues of %3D V10 10 Lz are – 2h, -ħ, 0, ħ, 2ħfor the eigenvectors | – 2 >, |– 1>, |0 >, |1 >, |2 >, respectively. What is AL,? V31 10 7 19 25arrow_forwardWe have a three dimensional vector space where |P1), |P2) and |23) form a complete orthonormal basis. In this vector space we have two states |a)=5i|1)+3i 2)+(-2+2i) 3) and |B) =4i|1)-5 i) Calculate (a and (B, in terms of the dual basis vectors (y|, (p2|, (P3|. ii) Calculate the inner/scalar products (alB) and (Ba). Show that (8|a) =(a|B)".arrow_forwardConsider an electron in an external magnetic field in the SzS-direction, $\mathbf{B} B_z \hat{k}S. If the initial spin state of the electron is the eigenstate of SS_x$ with eigenvalue S+\hbar/2$, \begin{enumerate} \item[a)] Find the state of the system at time St$. \item [b)] Show that the system returns to its initial state and calculate the angular frequency. \item [c)] Calculates the expected value of SS_XS, SS_yS and SS_ZS as a function of time. \ end {enumerate}arrow_forward
arrow_back_ios
arrow_forward_ios